cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

User: Sebastiao Antonio da Silva

Sebastiao Antonio da Silva's wiki page.

Sebastiao Antonio da Silva has authored 1 sequences.

A060569 Consider Pythagorean triples which satisfy X^2+(X+7)^2=Z^2; sequence gives increasing values of Z.

Original entry on oeis.org

13, 17, 73, 97, 425, 565, 2477, 3293, 14437, 19193, 84145, 111865, 490433, 651997, 2858453, 3800117, 16660285, 22148705, 97103257, 129092113, 565959257, 752403973, 3298652285, 4385331725, 19225954453, 25559586377, 112057074433, 148972186537, 653116492145
Offset: 1

Author

Keywords

Comments

The sequence gives the values of Z in X^2 + Y^2 = Z^2 where Y = X + 7 and gcd(X,Y,Z)=1. The values of X are given by the formula: X(1)=5, X(2)=8, X(3)=48, X(4)=65, X(n) = 6*X(n-2) - X(n-4) + 14 for n >= 5 - see A117474. Also, Y - X = 7, which is the second term in A058529. We have Z(1)=13, Z(2)=17, Z(3)=73, Z(4)=97, Z(n)=6*Z(n-2) - Z(n-4) for n >= 5. - Andras Erszegi (erszegi.andras(AT)chello.hu), Mar 19 2006

Programs

  • Maple
    f:=proc(n) option remember; if n=1 then RETURN(13) fi; if n=2 then RETURN(17) fi; if n=3 then RETURN(73) fi; if n=4 then RETURN(97) fi; 6*f(n-2)-f(n-4); end;
  • Mathematica
    LinearRecurrence[{0,6,0,-1},{13,17,73,97},30] (* Harvey P. Dale, Dec 02 2017 *)

Formula

G.f.: (13 + 17 x - 5 x^2 - 5 x^3)/(1 - 6 x^2 + x^4). - Robert Israel, Jul 17 2017

Extensions

Edited by N. J. A. Sloane, Oct 06 2007