cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-2 of 2 results.

A220414 a(n) = 6*a(n-1) - a(n-2), with a(1) = 13, a(2) = 73.

Original entry on oeis.org

13, 73, 425, 2477, 14437, 84145, 490433, 2858453, 16660285, 97103257, 565959257, 3298652285, 19225954453, 112057074433, 653116492145, 3806641878437, 22186734778477, 129313766792425, 753695865976073, 4392861429064013, 25603472708408005, 149227974821384017
Offset: 1

Views

Author

Keywords

Comments

a(n) is the area of the 4-generalized Fibonacci snowflake.
a(n) is the area of the 5-generalized Fibonacci snowflake, for n >= 2.
From Wolfdieter Lang, Feb 07 2015: (Start)
This sequence gives one part of the positive proper (sometimes called primitive) solutions y of the Pell equation x^2 - 2*y^2 = - 7^2 based on the fundamental solution (x0, y0) = (-1, 5). The corresponding x solutions are given in A254757.
The other part of the proper solutions are given in (A254758(n), A254759(n)) for n >= 0.
The improper positive solutions come from 7*(x(n), y(n)) with the positive proper solutions of the Pell equation x^2 - 2*y^2 = -1 given in (A001653(n-1), A002315(n)), for n >= 1. (End)
The terms of this sequence are hypotenuses of Pythagorean triangles whose difference between legs is equal to 7. - César Aguilera, Sep 29 2023

Examples

			From _Wolfdieter Lang_, Feb 07 2015: (Start)
Pell equation x^2 - 2*y^2 = -7^2 instance:
A254757(3)^2 - 2*a(3)^2 = 601^2 - 2*425^2 = -49. (End)
		

Crossrefs

Programs

  • Magma
    I:=[13, 73]; [n le 2 select I[n] else 6*Self(n-1) - Self(n-2): n in [1..25]]; // Vincenzo Librandi, Feb 01 2013
  • Maple
    with(orthopoly): a := n -> `if`(n=1,13,13*U(n-1,3)-5*U(n-2,3)):
    seq(a(n),n=1..22); # (after Wolfdieter Lang) Peter Luschny, Feb 07 2015
  • Mathematica
    t = {13, 73}; Do[AppendTo[t, 6*t[[-1]] - t[[-2]]], {30}]; t (* T. D. Noe, Dec 20 2012 *)
    LinearRecurrence[{6,-1},{13,73},40] (* Harvey P. Dale, Jan 26 2013 *)

Formula

a(n) = A078343(n)^2 + A078343(n+1)^2 = A060569(2*n-1).
G.f.: (13-5*x)/(x^2-6*x+1). - Harvey P. Dale, Jan 26 2013
From Wolfdieter Lang, Feb 07 2015: (Start)
a(n) = 13*S(n-1, 6) - 5*S(n-2, 6), n >= 1, with Chebyshev's S-polynomials evaluated at x = 6 (see A049310).
a(n) = 6*a(n-1) - a(n-2), n >= 2, with a(0) = 5 and a(1) = 13.
a(n) = irrational part of z(n), where z(n) = (-1+5*sqrt(2))*(3+2*sqrt(2))^n, n >= 1. (End)

A117474 The values of 'a' in a^2 + b^2 = c^2 where b - a = 7 and gcd(a,b,c)=1.

Original entry on oeis.org

5, 8, 48, 65, 297, 396, 1748, 2325, 10205, 13568, 59496, 79097, 346785, 461028, 2021228, 2687085, 11780597, 15661496, 68662368, 91281905, 400193625, 532029948, 2332499396, 3100897797, 13594802765, 18073356848
Offset: 1

Views

Author

Andras Erszegi (erszegi.andras(AT)chello.hu), Mar 19 2006

Keywords

Comments

The values of 'c' are in A060569.

Examples

			a(5) = 6*48 - 5 + 14 = 297, 297^2 + 304^2 = 425^2, 304 - 297 = 7, and gcd(297, 304, 425) = 1.
		

Crossrefs

Cf. A060569.

Programs

  • Maple
    g:=proc(n) option remember; if n=1 then RETURN(5) fi; if n=2 then RETURN(8) fi; if n=3 then RETURN(48) fi; if n=4 then RETURN(65) fi; 6*g(n-2)-g(n-4)+14; end; # N. J. A. Sloane, Oct 06 2007
  • Mathematica
    LinearRecurrence[{1,6,-6,-1,1},{5,8,48,65,297},40] (* Harvey P. Dale, May 07 2025 *)

Formula

a(n) = 6*a(n-2) - a(n-4) + 14; a(1)=5, a(2)=8, a(3)=48, a(4)=65.
G.f.: x*(3*x^4 + x^3 - 10*x^2 - 3*x-5) / ((x-1)*(x^2-2*x-1)*(x^2+2*x-1)). [Colin Barker, Dec 17 2012]
Showing 1-2 of 2 results.