cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A379011 Square array A(n, k) = 2*phi(A246278(n, k)) - A246278(n, k), read by falling antidiagonals; A083254, (2*phi(n)-n), applied to the prime shift array.

Original entry on oeis.org

0, 0, 1, -2, 3, 3, 0, 1, 15, 5, -2, 9, 13, 35, 9, -4, 3, 75, 43, 99, 11, -2, 3, 25, 245, 97, 143, 15, 0, 7, 65, 53, 1089, 163, 255, 17, -6, 27, 31, 301, 133, 1859, 253, 323, 21, -4, 5, 375, 73, 1067, 185, 4335, 355, 483, 27, -2, 9, 91, 1715, 151, 2119, 313, 6137, 565, 783, 29, -8, 9, 125, 473, 11979, 229, 4301, 457, 11109, 781, 899, 35
Offset: 1

Views

Author

Antti Karttunen, Dec 14 2024

Keywords

Comments

Each column is strictly increasing.

Examples

			The top left corner of the array:
k=  |  1    2    3      4    5      6    7       8      9     10   11      12
2k= |  2    4    6      8   10     12   14      16     18     20   22      24
----+-------------------------------------------------------------------------
  1 |  0,   0,  -2,     0,  -2,    -4,  -2,      0,    -6,    -4,  -2,     -8,
  2 |  1,   3,   1,     9,   3,     3,   7,     27,     5,     9,   9,      9,
  3 |  3,  15,  13,    75,  25,    65,  31,    375,    91,   125,  43,    325,
  4 |  5,  35,  43,   245,  53,   301,  73,   1715,   473,   371,  83,   2107,
  5 |  9,  99,  97,  1089, 133,  1067, 151,  11979,  1261,  1463, 187,  11737,
  6 | 11, 143, 163,  1859, 185,  2119, 229,  24167,  2771,  2405, 295,  27547,
  7 | 15, 255, 253,  4335, 313,  4301, 403,  73695,  4807,  5321, 433,  73117,
  8 | 17, 323, 355,  6137, 457,  6745, 491, 116603,  8165,  8683, 593, 128155,
  9 | 21, 483, 565, 11109, 607, 12995, 733, 255507, 16385, 13961, 817, 298885,
		

Crossrefs

Cf. A040976 (column 1), A378986 (row 1).
Cf. also A378979.

Programs

  • PARI
    up_to = 11325; \\ = binomial(150+1,2)
    A083254(n) = (2*eulerphi(n)-n);
    A246278sq(row,col) = if(1==row,2*col, my(f = factor(2*col)); for(i=1, #f~, f[i,1] = prime(primepi(f[i,1])+(row-1))); factorback(f));
    A379011sq(row,col) = A083254(A246278sq(row,col));
    A379011list(up_to) = { my(v = vector(up_to), i=0); for(a=1,oo, for(col=1,a, i++; if(i > up_to, return(v)); v[i] = A379011sq(col,(a-(col-1))))); (v); };
    v379011 = A379011list(up_to);
    A379011(n) = v379011[n];

Formula

A(n, k) = 2*A379010(n, k) - A246278(n, k).