cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A379103 Expansion of (1-3*x-sqrt(9*x^2-14*x+1))/4.

Original entry on oeis.org

0, 1, 5, 35, 295, 2765, 27705, 290535, 3148995, 34995065, 396602605, 4566227435, 53259218495, 627982592965, 7473163652705, 89640387354735, 1082664905352795, 13155505626756465, 160709002086562005, 1972595405313408435, 24315686632846439895, 300886761671728853565, 3736205372071338170505, 46540791299676591116535
Offset: 0

Views

Author

Nathaniel Johnston, Dec 15 2024

Keywords

Comments

Problem A6 on the 2024 William Lowell Putnam Mathematical Competition was to compute the Hankel transform of this sequence, which is A110147.
Given constants X and Y, let A(x) = (1 - x*(X - Y) - sqrt(1 - 2*x*(X + Y) + x^2*(X - Y)^2))/(2*Y) = x*(1) + x^2*(X) + x^3*X*(X + Y) + x^4*X*(X^2 + 3*X*Y + Y^2) + ... where the coefficients of A(x) is the Narayana triangle A090181. A(x) satisfies 0 = x - A(x)*(1 - x*(X-Y)) + A(x)^2*Y. The Hankel transform of the coefficients 1, X, X*(X + Y), ... is the sequence 1, (X*Y), (X*Y)^2, ... while the Hankel transform of X, X*(X + Y), X*(X^2 + 3*X*Y + Y^2), ... is the sequence X, X^3*Y, X^6*Y^3, X^10*Y^6, .... In the case of this sequence, X = 5 and Y = 2. - Michael Somos, Apr 26 2025

Examples

			G.f. = x + 5*x^2 + 35*x^3 + 295*x^4 + 2765*x^5 + 27705*x^6 + ... - _Michael Somos_, Apr 26 2025
		

Crossrefs

Programs

  • MATLAB
    a = 3;b = 2;c(1) = 1;last_val = 16;for j = 2:last_val
    c(j) = a*c(j-1) + b*sum(c(1:j-1).*fliplr(c(1:j-1)));
    end
    
  • Mathematica
    a[ n_] := SeriesCoefficient[ (1 - 3*x - Sqrt[1 - 14*x + 9*x^2])/4, {x, 0, n}]; (* Michael Somos, Apr 26 2025 *)
    a[ n_] := With[{X = 5, Y = 2}, SeriesCoefficient[ Nest[x/(1 - (X-Y)*x - Y*#)&, O[x], n], {x, 0, n}]]; (* Michael Somos, Apr 28 2025 *)
    a[ n_] := With[{X = 5, Y = 2}, SeriesCoefficient[ Nest[x/(1 - X*x/(1 - Y*#))&, O[x], Ceiling[n/2]], {x, 0, n}]]; (* Michael Somos, Apr 28 2025 *)
  • PARI
    my(x='x+O('x^33)); concat([0],Vec((1-3*x-sqrt(9*x^2-14*x+1))/4)) \\ Joerg Arndt, Dec 15 2024
    
  • PARI
    a(n) = my(A = O(x)); for(k=1, n, A = x + 3*x*A + 2*A^2); polcoeff(A, n); /* Michael Somos, Apr 26 2025 */
    
  • PARI
    a(n) = my(A = O(x), X = 5, Y = 2); for(k = 1, n, A = x/(1 - (X-Y)*x - Y*A)); polcoeff(A, n); /* Michael Somos, Apr 28 2025 */
    
  • PARI
    a(n) = my(A = O(x), X = 5, Y = 2); for(k = 1, (n+1)\2, A = x/(1 - X*x/(1 - Y*A))); polcoeff(A, n); /* Michael Somos, Apr 28 2025 */

Formula

a(0) = 0, a(1) = 1, a(n) = 3*a(n-1) + 2*Sum_{k=0..n} a(k)*a(n-k) for n >= 2.
G.f.: (1-3*x-sqrt(9*x^2-14*x+1))/4.
G.f.: x/(1-5*x/(1-2*x/(1-5*x/(1-2*x/(1-5*x/(...)))))). - Thomas Scheuerle, Feb 28 2025
a(n) = (1/4)*(-1)^(n+1) * Sum_{k=0..n} binomial(1/2,k) * binomial(1/2,n-k) * (7+2*sqrt(10))^k * (7-2*sqrt(10))^(n-k) for n >= 2. - Ehren Metcalfe, Feb 26 2025
a(n) ~ 5^(1/4) * (7 + 2*sqrt(10))^(n - 1/2) / (2^(7/4) * sqrt(Pi) * n^(3/2)). - Vaclav Kotesovec, Feb 27 2025
The g.f. A(x) satisfies 0 = x - (1 - 3*x)*A(x) + 2*A(x)^2 and A(x) = x + 3*x*A(x) + 2*A(x)^2. - Michael Somos, Apr 26 2025