cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A379141 If n = Product (p_j^k_j) then a(n) = numerator of Sum 1/k_j.

Original entry on oeis.org

0, 1, 1, 1, 1, 2, 1, 1, 1, 2, 1, 3, 1, 2, 2, 1, 1, 3, 1, 3, 2, 2, 1, 4, 1, 2, 1, 3, 1, 3, 1, 1, 2, 2, 2, 1, 1, 2, 2, 4, 1, 3, 1, 3, 3, 2, 1, 5, 1, 3, 2, 3, 1, 4, 2, 4, 2, 2, 1, 5, 1, 2, 3, 1, 2, 3, 1, 3, 2, 3, 1, 5, 1, 2, 3, 3, 2, 3, 1, 5, 1, 2, 1, 5, 2, 2, 2, 4, 1, 5, 2, 3, 2, 2, 2, 6, 1, 3, 3, 1, 1, 3, 1, 4, 3, 2, 1, 5, 1, 3
Offset: 1

Views

Author

Ilya Gutkovskiy, Dec 16 2024

Keywords

Crossrefs

Programs

  • Maple
    a:= n-> numer(add(1/i[2], i=ifactors(n)[2])):
    seq(a(n), n=1..110);  # Alois P. Heinz, Dec 16 2024
  • Mathematica
    Join[{0}, Table[Plus @@ (1/#[[2]] & /@ FactorInteger[n]), {n, 2, 110}]] // Numerator
  • PARI
    a(n) = my(f=factor(n)); numerator(sum(k=1, #f~, 1/f[k,2])); \\ Michel Marcus, Dec 16 2024