cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-4 of 4 results.

A379188 G.f. A(x) satisfies A(x) = 1/((1 - x*A(x)^3) * (1 - x*A(x))^3).

Original entry on oeis.org

1, 4, 34, 392, 5271, 77530, 1208602, 19620262, 328167191, 5616065633, 97867738285, 1730732539345, 30981439344096, 560293394484145, 10221582080782452, 187884236846039893, 3476266045318846245, 64690833375603622619, 1210026171180264742927, 22736845507710710652858
Offset: 0

Views

Author

Seiichi Manyama, Dec 17 2024

Keywords

Crossrefs

Programs

  • PARI
    a(n) = sum(k=0, n, binomial(n+3*k+1, k)*binomial(4*n+5*k+2, n-k)/(n+3*k+1));

Formula

a(n) = Sum_{k=0..n} binomial(n+3*k+1,k) * binomial(4*n+5*k+2,n-k)/(n+3*k+1).

A379209 G.f. A(x) satisfies A(x) = 1/((1 - x*A(x)^2) * (1 - x*A(x))).

Original entry on oeis.org

1, 2, 9, 53, 357, 2605, 20041, 160074, 1314821, 11036015, 94242752, 816190963, 7151741597, 63287390223, 564791911903, 5077284164245, 45935201005749, 417928249605123, 3821430547469626, 35098466575407095, 323662850948066340, 2995524340795970120
Offset: 0

Views

Author

Seiichi Manyama, Dec 18 2024

Keywords

Crossrefs

Programs

  • PARI
    a(n) = sum(k=0, n, binomial(n+2*k+1, k)*binomial(2*n, n-k)/(n+2*k+1));

Formula

a(n) = Sum_{k=0..n} binomial(n+2*k+1,k) * binomial(2*n,n-k)/(n+2*k+1).
a(n) = A190738(n)/(n+1).

A379186 G.f. A(x) satisfies A(x) = 1/((1 - x*A(x)^3) * (1 - x*A(x))^2).

Original entry on oeis.org

1, 3, 21, 202, 2270, 27903, 363412, 4927840, 68834941, 983680783, 14312988289, 211329419670, 3158263216267, 47682769300288, 726188701482730, 11142842570134264, 172101193009427174, 2673445730846829604, 41742159037922167264, 654721526817143247304, 10311337739352708700427
Offset: 0

Views

Author

Seiichi Manyama, Dec 17 2024

Keywords

Crossrefs

Programs

  • Mathematica
    terms = 21; A[] = 0; Do[A[x] = 1/((1-x*A[x]^3)*(1 -x*A[x])^2) + O[x]^terms // Normal, terms]; CoefficientList[A[x], x] (* Stefano Spezia, Jun 14 2025 *)
  • PARI
    a(n) = sum(k=0, n, binomial(n+3*k+1, k)*binomial(3*n+3*k+1, n-k)/(n+3*k+1));

Formula

a(n) = Sum_{k=0..n} binomial(n+3*k+1,k) * binomial(3*n+3*k+1,n-k)/(n+3*k+1).

A379283 G.f. A(x) satisfies A(x) = 1/( (1 - x*A(x)^3) * (1 - x*A(x)) )^2.

Original entry on oeis.org

1, 4, 42, 612, 10387, 192312, 3766316, 76716624, 1608691229, 34495221722, 752911467734, 16671973428486, 373609441084507, 8457057155407906, 193087102810266948, 4441320670474030222, 102821800799622552713, 2394063264658388861914, 56025225620739219372819
Offset: 0

Views

Author

Seiichi Manyama, Dec 19 2024

Keywords

Crossrefs

Programs

  • PARI
    a(n) = 2*sum(k=0, n, binomial(2*n+5*k+2, k)*binomial(3*n+3*k+1, n-k)/(2*n+5*k+2));

Formula

G.f.: B(x)^2 where B(x) is the g.f. of A379287.
a(n) = 2 * Sum_{k=0..n} binomial(2*n+5*k+2,k) * binomial(3*n+3*k+1,n-k)/(2*n+5*k+2).
Showing 1-4 of 4 results.