A188630 Triangular numbers that are the product of two triangular numbers greater than 1.
36, 45, 210, 630, 780, 990, 1540, 2850, 3570, 4095, 4851, 8778, 11781, 15400, 17955, 19110, 21528, 25200, 26565, 26796, 33930, 37128, 40755, 43956, 61425, 61776, 70125, 79800, 105570, 113050, 122265, 145530, 176715, 189420, 192510, 246753, 270480, 303810, 349866, 437580, 500500, 526851
Offset: 1
Keywords
Examples
210 = T(20) = 10 * 21 = T(4) * T(6).
Links
- Donovan Johnson, Table of n, a(n) for n = 1..4082
- Trygve Breiteig, When is the product of two oblong numbers another oblong?, Math. Mag. 73 (2000), 120-129.
Crossrefs
Programs
-
Maple
A188630 := proc(limit) local t,E,n,k,c,b,ist; E:=NULL; t := proc(n) option remember; iquo(n*(n+1), 2) end; ist := proc(n) option remember; n = t(floor(sqrt(2*n))) end; for n from 2 do c := t(n); if c > limit then break fi; for k from 2 do b := c*t(k); if b > limit then break fi; if ist(b) then E := E, b fi; od od; sort({E}) end: A188630(200000); # Peter Luschny, Dec 21 2017
-
Mathematica
TriangularQ[n_] := IntegerQ[Sqrt[1 + 8 n]]; TriIndex[n_] := Floor[(-1 + Sqrt[1 + 8*n])/2]; lim = 10^6; nMax = TriIndex[lim/3]; tri = Table[n (n + 1)/2, {n, 2, nMax}]; Union[Reap[Do[num = tri[[i]]*tri[[j]]; If[TriangularQ[num], Sow[num]], {i, TriIndex[Sqrt[lim]]}, {j, i, TriIndex[lim/tri[[i]]] - 1}]][[2, 1]]] Module[{upto=530000,maxr},maxr=Ceiling[(Sqrt[1+8*Ceiling[upto/3]]-1)/2]; Union[Select[Times@@@Tuples[Rest[Accumulate[Range[maxr]]],2], IntegerQ[ Sqrt[1+8#]]&<=upto&]]] (* Harvey P. Dale, Jun 12 2012 *)
Comments