A379895 Number of 1 <= m <= N-1 such that there exists 1 <= x < y <= N-1 such that 1/x^2 - 1/y^2 = 1/m^2 - 1/N^2, N = A355812(n).
1, 2, 2, 2, 1, 2, 2, 2, 2, 1, 2, 2, 2, 2, 2, 1, 2, 2, 2, 2, 2, 2, 2, 2, 1, 2, 2, 2, 2, 2, 2, 3, 2, 2, 1, 2, 2, 2, 4, 1, 2, 4, 2, 2, 3, 2, 2, 2, 2, 2, 2, 4, 3, 2, 2, 4, 2, 1, 2, 2, 6, 2, 2, 4, 2, 2, 1, 2, 2, 2, 2, 2, 2, 2, 3, 3, 3, 2, 2, 1, 2, 5, 1, 2, 6, 4, 2, 4, 1, 2, 2, 7
Offset: 1
Keywords
Examples
a(65) = 2 since there are 2 such m for N = A355812(65) = 385: 1/77^2 - 1/385^2 = 1/55^2 - 1/77^2 = 1/70^2 - 1/154^2; 1/154^2 - 1/385^2 = 1/70^2 - 1/77^2. Note that A355813(65) = 3 because there are two solutions (x,y) corresponding to m = 77. a(204) = 5 since there are 5 such m for N = A355812(204) = 1015: 1/140^2 - 1/1015^2 = 1/116^2 - 1/203^2; 1/203^2 - 1/1015^2 = 1/116^2 - 1/140^2 = 1/145^2 - 1/203^2; 1/609^2 - 1/1015^2 = 1/525^2 - 1/725^2; 1/700^2 - 1/1015^2 = 1/580^2 - 1/725^2; 1/725^2 - 1/1015^2 = 1/525^2 - 1/609^2 = 1/580^2 - 1/700^2. Note that A355813(204) = 7 because there are two solutions (x,y) corresponding to m = 203 and to m = 725.
Links
- Jianing Song, Table of n, a(n) for n = 1..307 (corresponding to A355812(n) <= 1500)
Programs
-
PARI
b(n) = my(v=[], m2); for(y=1, n-1, for(x=1, y-1, m2=1/(1/x^2-1/y^2+1/n^2); if(m2==m2\1 && issquare(m2), v=concat(v, [m2])))); #Set(v) \\ #v gives A355813 for(n=1, 1500, if(b(n)>0, print1(b(n), ", ")))
Comments