cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A380108 Number of distinct partitions of length n binary strings into maximal constant substrings up to permutation.

Original entry on oeis.org

1, 2, 3, 6, 10, 18, 29, 48, 75, 118, 179, 272, 403, 596, 865, 1252, 1786, 2538, 3566, 4990, 6918, 9552, 13086, 17856, 24205, 32684, 43881, 58698, 78125, 103618, 136820, 180064, 236031, 308432, 401585, 521340, 674579, 870446, 1119786, 1436798, 1838405, 2346480, 2987204
Offset: 0

Views

Author

Yaroslav Deryavko, Jan 12 2025

Keywords

Comments

Equivalently, a(n) is the number of partitions of n into parts of two kinds where the number of parts of each kind differ by at most one.

Examples

			For n = 3, the partitions are (000), (111), (00, 1), (0, 11), (0, 0, 1), (0, 1, 1).
		

Crossrefs

Programs

  • Maple
    g:= (n, i, t)-> `if`(t>1+n, 0, `if`(n=0, 1, b(n, i, t))):
    b:= proc(n, i, t) option remember; add(add(g(n-i*j,
          min(n-i*j, i-1), abs(t+2*h-j)), h=0..j), j=`if`(i=1, n, 0..n/i))
        end:
    a:= n-> g(n$2, 0):
    seq(a(n), n=0..42);  # Alois P. Heinz, Jan 15 2025
  • Mathematica
    g[n_, i_, t_] := If[t > 1+n, 0, If[n == 0, 1, b[n, i, t]]];
    b[n_, i_, t_] := b[n, i, t] = Sum[Sum[g[n-i*j,
       Min[n-i*j, i-1], Abs[t+2*h-j]], {h, 0, j}], {j, If[i == 1, n, 0], n/i}];
    a[n_] := g[n, n, 0];
    Table[a[n], {n, 0, 42}] (* Jean-François Alcover, Feb 02 2025, after Alois P. Heinz *)
  • PARI
    seq(n)={my(p=1/prod(k=1, n, 1-y*x^k + O(x*x^n))); Vec(sum(k=0, n\2, polcoef(p, k, y)*(2*polcoef(p, k+1, y) + polcoef(p, k, y))))} \\ Andrew Howroyd, Jan 12 2025
  • Python
    n = 0
    while True:
        m = set()
        for i in range(2**n):
            t = bin(i)[2:]
            t = '0' * (n - len(t)) + t + '2'
            l = []
            s = 0
            for j in range(1, n + 1):
                if t[j] != t[j - 1]:
                    l.append(t[s:j])
                    s = j
            l.sort()
            l = tuple(l)
            m.add(l)
        print(len(m), end=' ')
        n += 1
    

Formula

G.f.: Sum_{k>=0} ([y^k] P(x,y))*([y^k] (1 + 2*y)*P(x,y)), where P(x,y) = Product_{k>=1} 1/(1 - y*x^k). - Andrew Howroyd, Jan 12 2025