A387364 Least number which is not a prime power and whose prime factors are equal modulo n.
6, 15, 10, 21, 14, 55, 46, 33, 22, 39, 26, 85, 82, 51, 34, 57, 38, 115, 118, 69, 46, 141, 142, 145, 159, 87, 58, 93, 62, 259, 314, 185, 202, 111, 74, 205, 226, 123, 82, 129, 86, 235, 262, 141, 94, 371, 291, 265, 298, 159, 106, 321, 327, 295, 334, 177, 118, 183
Offset: 1
Examples
For n = 2, factors of a(2) = 15 are 3 and 5, they both have a residue of 1 mod 2.
Links
- Robert G. Wilson v, Table of n, a(n) for n = 1..10000
Crossrefs
First term of A380758 when n = 10.
Programs
-
Mathematica
a[n_]:=Module[{k=1},Until[!PrimePowerQ[k]&&Min[Mod[First/@FactorInteger[k],n]]==Max[Mod[First/@FactorInteger[k],n]],k++];k];Array[a,58] (* James C. McMahon, Sep 03 2025 *)
-
PARI
f(k, n) = if (!isprimepower(k), my(f=factor(k)[,1]); #Set(apply(x->Mod(x, n), f)) == 1); a(n) = my(k=1); while (!f(k,n), k++); k; \\ Michel Marcus, Aug 27 2025
Comments