A380305 Triangle read by rows: T(n,k) = (n - floor((n - k)/k)) mod k, for 0 < k <= n.
0, 0, 0, 0, 1, 0, 0, 1, 1, 0, 0, 0, 2, 1, 0, 0, 0, 2, 2, 1, 0, 0, 1, 0, 3, 2, 1, 0, 0, 1, 1, 3, 3, 2, 1, 0, 0, 0, 1, 0, 4, 3, 2, 1, 0, 0, 0, 2, 1, 4, 4, 3, 2, 1, 0, 0, 1, 0, 2, 0, 5, 4, 3, 2, 1, 0, 0, 1, 0, 2, 1, 5, 5, 4, 3, 2, 1, 0, 0, 0, 1, 3, 2, 0, 6, 5, 4, 3, 2, 1, 0
Offset: 1
Examples
Triangle begins: n\k| 1 2 3 4 5 6 7 8 9 10 11 ... ---------------------------- 1| 0 2| 0 0 3| 0 1 0 4| 0 1 1 0 5| 0 0 2 1 0 6| 0 0 2 2 1 0 7| 0 1 0 3 2 1 0 8| 0 1 1 3 3 2 1 0 9| 0 0 1 0 4 3 2 1 0 10| 0 0 2 1 4 4 3 2 1 0 11| 0 1 0 2 0 5 4 3 2 1 0 ...
Programs
-
Mathematica
T[n_,k_]:=Mod[n - Floor[(n - k)/k], k]; Table[T[n,k], {n,13},{k,n}]//Flatten (* Stefano Spezia, Jan 20 2025 *)
-
Maxima
(for n:1 thru 25 do (for k:1 thru n do (T[n,k]:mod(n-floor((n-k)/k),k)), print(makelist(T[n,i], i, 1, n))));
-
PARI
row(n) = vector(n, k, (n - floor((n - k)/k)) % k); \\ Michel Marcus, Jan 20 2025
Comments