A380402 Number of proper prime powers (in A246547) that do not exceed primorial A002110(n).
0, 0, 1, 6, 14, 34, 75, 187, 551, 1954, 8317, 38582, 200978, 1125541, 6562122, 40444003, 266832233, 1870169623, 13424553758, 101495825622, 793832121165, 6325729776075, 52616754936494, 450157758564742, 3999323787879764, 37180986240914714, 353667558431662474
Offset: 0
Examples
Let s = A246547. a(0) = a(1) = 0 since P(0) = 1 and P(1) = 2, and the smallest number in s is 4. a(2) = 1 since P(2) = 6, and s(1) = 4 is the only term in s <= 6. a(3) = 6 since P(3) = 30, and the set s(1..6) = {4, 8, 9, 16, 25, 27} contains k <= 30. a(4) = 14 since P(4) = 210, and the set s(1..14) = {4, 8, 9, 16, 25, 27, 32, 49, 64, 81, 121, 125, 128, 169} contains k <= 210, etc.
Programs
-
Mathematica
Table[Sum[PrimePi@ Floor[#^(1/k)], {k, 2, Floor@ Log2[#]}] &[Product[Prime[i], {i, n}]], {n, 0, nn}]
-
Python
from sympy import primorial, primepi, integer_nthroot def A380402(n): if n == 0: return 0 m = primorial(n) return int(sum(primepi(integer_nthroot(m,k)[0]) for k in range(2,m.bit_length()))) # Chai Wah Wu, Jan 24 2025
Formula
a(n) = Sum_{k=2..floor(log_2(P(n)))} pi(floor(P(n)^(1/k))), where P(n) = A002110(n).
Extensions
a(24) corrected by Chai Wah Wu, Jan 25 2025
a(26) from Jinyuan Wang, Feb 25 2025