cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A380421 a(n) is the inverse of 2^3 modulo prime(n).

Original entry on oeis.org

2, 2, 1, 7, 5, 15, 12, 3, 11, 4, 14, 36, 27, 6, 20, 37, 23, 42, 9, 64, 10, 52, 78, 85, 38, 13, 67, 41, 99, 16, 82, 120, 87, 56, 19, 59, 102, 21, 65, 112, 68, 24, 169, 74, 25, 132, 28, 142, 86, 204, 30, 211, 157, 225, 33, 101, 34, 104, 246, 177, 110, 192, 39, 274
Offset: 2

Views

Author

R. J. Cintra, Jan 25 2025

Keywords

Crossrefs

Programs

  • Maple
    seq(1/8 mod ithprime(n), n=2..65);  # Alois P. Heinz, Feb 14 2025
  • Mathematica
    a[n_] := ModularInverse[8, Prime[n]]; Array[a, 100, 2] (* Amiram Eldar, Feb 05 2025 *)
  • PARI
    a(n) = lift(1/Mod(8, prime(n))); \\ Michel Marcus, Jan 25 2025
    
  • Python
    from sympy import prime
    def A380421(n): return pow(8,-1,prime(n)) # Chai Wah Wu, Feb 14 2025

Formula

a(n) = 8^(-1) (mod prime(n)) for n >= 2.
a(n) = (A006254(n) * A292411(n)) (mod prime(n)) for n >= 2.
If prime(n) mod 8 = j in {1, 3, 5, 7}, then a(n) = (1 + (8-j)*prime(n))/8. - Robert Israel, Feb 24 2025