cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-2 of 2 results.

A380654 Number of positive integers less than or equal to n that have the same sum of distinct prime factors as n.

Original entry on oeis.org

1, 1, 1, 2, 1, 2, 1, 3, 2, 2, 1, 3, 1, 1, 1, 4, 1, 4, 1, 3, 1, 2, 1, 5, 6, 1, 3, 2, 1, 2, 1, 5, 1, 2, 1, 7, 1, 1, 1, 4, 1, 2, 1, 3, 2, 1, 1, 8, 5, 6, 1, 2, 1, 9, 2, 3, 1, 2, 1, 3, 1, 1, 4, 6, 1, 3, 1, 3, 1, 2, 1, 10, 1, 1, 3, 2, 2, 3, 1, 7, 4, 2, 1, 3, 2, 1, 1, 4, 1, 5, 2, 2, 1, 1, 1, 11, 1, 4, 3, 8
Offset: 1

Views

Author

Ilya Gutkovskiy, Jan 29 2025

Keywords

Comments

Ordinal transform of A008472.

Crossrefs

Programs

  • Maple
    b:= n-> add(i[1], i=ifactors(n)[2]):
    p:= proc() 0 end:
    a:= proc(n) option remember; local t;
          t:= b(n); p(t):= p(t)+1
        end:
    seq(a(n), n=1..100);  # Alois P. Heinz, Jan 30 2025
  • Mathematica
    sopf[n_] := DivisorSum[n, # &, PrimeQ[#] &]; Table[Length[Select[Range[n], sopf[#] == sopf[n] &]], {n, 1, 100}]
  • Python
    from sympy import factorint
    from collections import Counter
    from itertools import count, islice
    def agen(): # generator of terms
        sopfcount = Counter()
        for n in count(1):
            key = sum(p for p in factorint(n))
            sopfcount[key] += 1
            yield sopfcount[key]
    print(list(islice(agen(), 100))) # Michael S. Branicky, Jan 30 2025

Formula

a(n) = |{j <= n : sopf(j) = sopf(n)}|.

A380584 Number of positive integers <= n that have the same sum of odd divisors as n.

Original entry on oeis.org

1, 2, 1, 3, 1, 2, 1, 4, 1, 2, 1, 3, 1, 2, 1, 5, 1, 2, 1, 3, 1, 2, 2, 4, 1, 2, 1, 3, 1, 3, 2, 6, 1, 2, 2, 3, 1, 2, 1, 4, 1, 3, 1, 3, 1, 4, 3, 5, 1, 2, 1, 3, 1, 2, 2, 4, 1, 2, 1, 5, 1, 4, 1, 7, 1, 4, 1, 3, 1, 5, 3, 4, 1, 2, 1, 3, 2, 2, 2, 5, 1, 2, 2, 5, 1, 2, 1, 4, 1, 2, 1, 6, 1, 6, 2, 6, 1, 2, 1, 3
Offset: 1

Views

Author

Ilya Gutkovskiy, Jan 30 2025

Keywords

Comments

Ordinal transform of A000593.

Crossrefs

Programs

  • Mathematica
    Table[Length[Select[Range[n], Sum[Mod[d, 2] d, {d, Divisors[#]}] == Sum[Mod[d, 2] d, {d, Divisors[n]}] &]], {n, 1, 100}]

Formula

a(n) = |{j <= n : A000593(j) = A000593(n)}|.
Showing 1-2 of 2 results.