A380822 Triangle read by rows: T(n,k) is the number of compositions of n with k pairs of equal adjacent parts and all parts in standard order.
1, 0, 1, 1, 0, 1, 1, 1, 0, 1, 0, 3, 1, 0, 1, 2, 1, 4, 1, 0, 1, 3, 3, 3, 5, 1, 0, 1, 2, 10, 5, 4, 6, 1, 0, 1, 5, 9, 17, 8, 5, 7, 1, 0, 1, 8, 16, 22, 26, 10, 6, 8, 1, 0, 1, 10, 35, 33, 37, 37, 12, 7, 9, 1, 0, 1, 19, 44, 80, 59, 56, 48, 14, 8, 10, 1, 0, 1
Offset: 1
Examples
Triangle begins: k=0 1 2 3 4 5 6 7 8 9 n=1 [1], n=2 [0, 1], n=3 [1, 0, 1], n=4 [1, 1, 0, 1], n=5 [0, 3, 1, 0, 1], n=6 [2, 1, 4, 1, 0, 1], n=7 [3, 3, 3, 5, 1, 0, 1], n=8 [2, 10, 5, 4, 6, 1, 0, 1], n=9 [5, 9, 17, 8, 5, 7, 1, 0, 1], n=10 [8, 16, 22, 26, 10, 6, 8, 1, 0, 1], ... Row n = 6 counts: T(6,0) = 2: (1,2,1,2), (1,2,3). T(6,1) = 1: (1,2,2,1). T(6,2) = 4: (1,1,1,2,1), (1,1,2,1,1), (1,1,2,2), (1,2,1,1,1). T(6,3) = 1: (1,1,1,1,2). T(6,4) = 0: . T(6,5) = 1: (1,1,1,1,1,1).
Links
- Alois P. Heinz, Rows n = 1..200, flattened
Programs
-
Maple
b:= proc(n, l, i) option remember; expand(`if`(n=0, 1, add( `if`(j=l, x, 1)*b(n-j, j, max(i, j)), j=1..min(n, i+1)))) end: T:= (n, k)-> coeff(b(n, 0$2), x, k): seq(seq(T(n, k), k=0..n-1), n=1..12); # Alois P. Heinz, May 08 2025
-
PARI
G(k,N) = {my(x='x+O('x^N)); if(k<1,1, G(k-1,N) * x^k * (1 + (1/(1 - sum(j=1,k, x^j/(1-(z-1)*x^j)))) * sum(j=1,k, z^(if(j==k,1,0)) * x^j/(1-(z-1)*x^j))))} T_xz(max_row) = {my(N = max_row+1, x='x+O('x^N), h = sum(i=1,N/2+1, G(i,N))); vector(N-1, n, Vecrev(polcoeff(h, n)))} T_xz(10)
Formula
G.f.: Sum_{i>0} G(i) where G(k) = G(k-1) * x*k * (1 + 1/(1 - Sum_{j=1..k} ( x^j/(1 - (z-1)*x^j) )) * Sum_{j=1..k} ( z^[j=k] * x^j/(1 - (z-1)*x^j) )) and G(0) = 1.
Comments