cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-1 of 1 results.

A380984 Primes p such that p*(p-1) consists of exactly two different decimal digits.

Original entry on oeis.org

5, 7, 11, 17, 67, 101, 167, 1667, 166667, 666667, 66666667, 666666667, 1666666667, 66666666667, 166666666667, 166666666666667, 66666666666666666667
Offset: 1

Views

Author

Robert Israel, Feb 11 2025

Keywords

Comments

Primes in A380974.
Contains (10^k+2)/6 for k in A076850 and (2*10^k + 1)/3 for k in A096507. It is conjectured that these sequences are infinite.
The last decimal digit of a(n)*(a(n)-1) is either 0, 2 or 6. - Chai Wah Wu, Feb 19 2025

Examples

			a(5) = 67 is a term because it is prime and 67 * 66 = 4422 consists of digits 2 and 4.
		

Crossrefs

Programs

  • Maple
    p:= 1: R:= NULL: count:= 0:
    while count < 11 do
    p:= nextprime(p);
    if nops(convert(convert(p*(p-1),base,10),set)) = 2 then
         R:= R,p; count:= count+1
    fi;
    od:
    R;
  • Mathematica
    Select[Prime[Range[10^6]],Length[Union[IntegerDigits[#(#-1)]]]==2&] (* James C. McMahon, Feb 13 2025 *)
  • PARI
    isok(k) = isprime(k) && #Set(digits(k*(k-1))) == 2; \\ Michel Marcus, Feb 11 2025
    
  • Python
    from math import isqrt
    from itertools import count, combinations, product, islice
    from sympy import isprime
    def A380984_gen(): # generator of terms
        for n in count(1):
            c = []
            for a in combinations('0123456789',2):
                if '0' in a or '2' in a or '6' in a:
                    for b in product(a,repeat=n):
                        if b[0] != '0' and b[-1] in {'0','2','6'} and b != (a[0],)*n and b != (a[1],)*n:
                            m = int(''.join(b))
                            q = isqrt(m)
                            if q*(q+1)==m and isprime(q+1):
                                c.append(q+1)
            yield from sorted(c)
    A380984_list = list(islice(A380984_gen(),10)) # Chai Wah Wu, Feb 19 2025

Extensions

a(12)-a(17) from Jinyuan Wang, Feb 12 2025
Showing 1-1 of 1 results.