A380977
Triangle read by rows: T(n,m) (1<=m<=n) = number of surjections f:[n]->[m] with f(n) != f(j), j
1, 0, 2, 0, 2, 6, 0, 2, 18, 24, 0, 2, 42, 144, 120, 0, 2, 90, 600, 1200, 720, 0, 2, 186, 2160, 7800, 10800, 5040, 0, 2, 378, 7224, 42000, 100800, 105840, 40320, 0, 2, 762, 23184, 204120, 756000, 1340640, 1128960, 362880, 0, 2, 1530, 72600, 932400, 5004720, 13335840, 18627840, 13063680, 3628800
Offset: 1
Examples
The triangle T(n,m) begins: n\m 1 2 3 4 5 6 7 8 9 10 ... 1: 1 2: 0 2 3: 0 2 6 4: 0 2 18 24 5: 0 2 42 144 120 6: 0 2 90 600 1200 720 7: 0 2 186 2160 7800 10800 5040 8: 0 2 378 7224 42000 100800 105840 40320 9: 0 2 762 23184 204120 756000 1340640 1128960 362880 10: 0 2 1530 72600 932400 5004720 13335840 18627840 13063680 3628800 ... T(4,3)=18 is the number of 4-sequences of draws from [3] completing the covering of [3] with the last draw; these sequences are (without brackets and commas): 1123 1213 1223 2113 2123 2213 1132 1312 1332 3112 3132 3312 2231 2321 2331 3221 3231 3321
Links
- Michael Shackleford, Problem 74. Free gift in the cereal box problem #2, Mathproblems.info.
Programs
-
Mathematica
Table[m! StirlingS2[n - 1, m - 1], {n, 10}, {m, n}]//Flatten
Comments