cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-1 of 1 results.

A005649 Expansion of e.g.f. (2 - e^x)^(-2).

Original entry on oeis.org

1, 2, 8, 44, 308, 2612, 25988, 296564, 3816548, 54667412, 862440068, 14857100084, 277474957988, 5584100659412, 120462266974148, 2772968936479604, 67843210855558628, 1757952715142990612, 48093560991292628228, 1385244691781856307124
Offset: 0

Views

Author

Keywords

Comments

Exponential self-convolution of numbers of preferential arrangements.
Number of compatible bipartitional relations on a set of cardinality n. - Ralf Stephan, Apr 27 2003
Stirling transform of A000142, shifted left one place: 1, 2, 6, 24, 120, 720, ... - Philippe Deléham, May 17 2005; corrected by Ilya Gutkovskiy, Jul 25 2018
With an extra 1 at the beginning, coefficients of the formal (divergent) series expansion at infinity of Sum_{k>=0} 1/binomial(x,k) = 1+1/x+2/x^2+8/x^3+... Also Sum_{k>=0} k!/x^k Product_{i=1..k-1} 1/(1-i/x) yields a generating function in 1/x. - Roland Bacher, Nov 21 2000
Stirling-Bernoulli transform of A001057: 1, -1, 2, -2, 3, -3, 4, ... - Philippe Deléham, May 27 2015
a(n) is the total number of open sets summed over all chain topologies that can be placed on an n-set. A chain topology is a topology whose open sets can be totally ordered by inclusion. - Geoffrey Critzer, Apr 06 2017
From Gus Wiseman, Jun 10 2020: (Start)
Also the number of length n + 1 sequences covering an initial interval of positive integers with no adjacent equal parts (anti-runs). For example, the a(0) = 1 through a(2) = 8 anti-runs are:
(1) (1,2) (1,2,1)
(2,1) (1,2,3)
(1,3,2)
(2,1,2)
(2,1,3)
(2,3,1)
(3,1,2)
(3,2,1)
Also the number of ordered set partitions of {1,...,n + 1} with no two successive vertices in the same block. For example, the a(0) = 1 through a(2) = 8 ordered set partitions are:
{{1}} {{1},{2}} {{1,3},{2}}
{{2},{1}} {{2},{1,3}}
{{1},{2},{3}}
{{1},{3},{2}}
{{2},{1},{3}}
{{2},{3},{1}}
{{3},{1},{2}}
{{3},{2},{1}}
(End)
From Manfred Boergens, Feb 24 2025: (Start)
a(n+1) is the n-th row sum in A380977.
Number of surjections f with domain [n+1] and f(n+1)!=f(j) for j
Number of (n+1)-tuples containing all elements of a set, with a unique last element.
Consider an urn with balls of pairwise different colors. a(n) is the number of (n+1)-sequences of draws with replacement completing the covering of all colors with the last draw, the number of colors running from 1 to n+1.
(End)

Examples

			a(2)=8 gives the number of 3-tuples containing all elements of a set [n] with n<=3 and a unique last element: 112, 221, 123, 213, 132, 312, 231, 321. - _Manfred Boergens_, Feb 24 2025
		

References

  • L. Comtet, Advanced Combinatorics, Reidel, 1974, p. 294.
  • N. J. A. Sloane and Simon Plouffe, The Encyclopedia of Integer Sequences, Academic Press, 1995 (includes this sequence).

Crossrefs

Cf. A000670.
2*A083410(n)=a(n), if n>0.
Pairwise sums of A052841 and also of A089677.
Anti-run compositions are counted by A003242.
A triangle counting maximal anti-runs of compositions is A106356.
Anti-runs of standard compositions are counted by A333381.
Adjacent unequal pairs in standard compositions are counted by A333382.
Cf. A380977.

Programs

  • Maple
    b:= proc(n, m) option remember;
         `if`(n=0, (m+1)!, m*b(n-1, m)+b(n-1, m+1))
        end:
    a:= n-> b(n, 0):
    seq(a(n), n=0..23);  # Alois P. Heinz, Aug 03 2021
  • Mathematica
    f[n_] := Sum[(i + j)^n/2^(2 + i + j), {i, 0, Infinity}, {j, 0, Infinity}]; Array[f, 20, 0] (* Vladimir Reshetnikov, Dec 31 2008 *)
    a[n_] := (-1)^n (PolyLog[-n-1, 2] - PolyLog[-n, 2])/4; Array[f, 20, 0] (* Vladimir Reshetnikov, Jan 23 2011 *)
    Range[0, 19]! CoefficientList[Series[(2 - Exp@ x)^-2, {x, 0, 19}], x] (* Robert G. Wilson v, Jan 23 2011 *)
    nn = 19; Range[0, nn]! CoefficientList[Series[1 + D[u^2 (Exp[z] - 1)/(1 - u (Exp[z] - 1)), u] /. u -> 1, {z, 0, nn}], z] (* Geoffrey Critzer, Apr 06 2017 *)
    allnorm[n_]:=If[n<=0,{{}},Function[s,Array[Count[s,y_/;y<=#]+1&,n]]/@Subsets[Range[n-1]+1]];
    Table[Length[Select[Join@@Permutations/@allnorm[n],FreeQ[Differences[#],0]&]],{n,0,6}] (* Gus Wiseman, Jun 10 2020 *)
    With[{nn=20},CoefficientList[Series[1/(2-E^x)^2,{x,0,nn}],x] Range[0,nn]!] (* Harvey P. Dale, Oct 02 2021 *)
    Table[Sum[(m+1)! StirlingS2[n,m],{m,0,n}],{n,0,19}] (* Manfred Boergens, Feb 24 2025 *)
  • Maxima
    t(n):=sum(stirling2(n,k)*k!,k,0,n);
    makelist(sum(binomial(n,k)*t(k)*t(n-k),k,0,n),n,0,20);
    /* Emanuele Munarini, Oct 02 2012 */
  • PARI
    a(n)=if(n<0,0,n!*polcoeff(subst(1/(1-y)^2,y,exp(x+x*O(x^n))-1),n))
    
  • PARI
    a(n)=polcoeff(sum(m=0, n,(2*m)!/m!*x^m/prod(k=1, m,1+(m+k)*x+x*O(x^n))), n)
    for(n=0, 20, print1(a(n), ", ")) \\ Paul D. Hanna, Jan 03 2013
    

Formula

E.g.f.: 1/(2-exp(x))^2.
a(n) = (A000670(n) + A000670(n+1)) / 2. - Philippe Deléham, May 16 2005
a(n) = D^n(1/(1-x)^2) evaluated at x = 0, where D is the operator (1+x)*d/dx. Cf. A000670 and A052841. - Peter Bala, Nov 25 2011
E.g.f.: 1/(2-exp(x))^2 = 1/(G(0) + 4), G(k) = 1-4/((2^k)-x*(4^k)/((2^k)*x-(2*k+2)/G(k+1))); (continued fraction). - Sergei N. Gladkovskii, Dec 15 2011
O.g.f.: Sum_{n>=0} (2*n)!/n! * x^n / Product_{k=1..n} (1 + (n+k)*x). - Paul D. Hanna, Jan 03 2013
G.f.: (G(0) - 1)/(x-1) where G(k) = 1 - (k+1)/(1-k*x)/(1-x/(x-1/G(k+1) )); (continued fraction). - Sergei N. Gladkovskii, Jan 15 2013
G.f.: 1/G(0) where G(k) = 1 - x*(k+2)/( 1 - 2*x*(k+1)/G(k+1) ); (continued fraction). - Sergei N. Gladkovskii, Mar 23 2013
a(n) = Sum_{k = 0..n} A163626(n,k) * A001057(k+1). - Philippe Deléham, May 27 2015
a(n) ~ n! * n / (4 * (log(2))^(n+2)). - Vaclav Kotesovec, Jul 01 2018
a(n) = Sum_{k=0..n} Stirling2(n,k)*(k + 1)!. - Ilya Gutkovskiy, Jul 25 2018
From Seiichi Manyama, Nov 19 2023: (Start)
a(0) = 1; a(n) = Sum_{k=1..n} (k/n + 1) * binomial(n,k) * a(n-k).
a(0) = 1; a(n) = 2*a(n-1) - 2*Sum_{k=1..n-1} (-1)^k * binomial(n-1,k) * a(n-k). (End)
Showing 1-1 of 1 results.