A380989 Position of first appearance of n in A380958 (number of prime factors minus sum of distinct prime exponents).
1, 6, 30, 210, 900, 7776, 27000, 279936, 810000, 9261000, 24300000, 362797056, 729000000, 13060694016, 21870000000, 408410100000, 656100000000, 16926659444736, 19683000000000, 609359740010496, 590490000000000, 18010885410000000, 17714700000000000
Offset: 0
Keywords
Examples
The terms together with their prime indices begin: 1: {} 6: {1,2} 30: {1,2,3} 210: {1,2,3,4} 900: {1,1,2,2,3,3} 7776: {1,1,1,1,1,2,2,2,2,2} 27000: {1,1,1,2,2,2,3,3,3} 279936: {1,1,1,1,1,1,1,2,2,2,2,2,2,2} 810000: {1,1,1,1,2,2,2,2,3,3,3,3} 9261000: {1,1,1,2,2,2,3,3,3,4,4,4}
Links
- David Consiglio, Jr., Table of n, a(n) for n = 0..100
- David Consiglio, Jr., Python program
Crossrefs
A005361 gives product of prime exponents.
Programs
-
Mathematica
prisig[n_]:=If[n==1,{},Last/@FactorInteger[n]]; q=Table[Total[prisig[n]]-Total[Union[prisig[n]]],{n,10000}]; mnrm[s_]:=If[Min@@s==1,mnrm[DeleteCases[s-1,0]]+1,0]; Table[Position[q,k][[1,1]],{k,0,mnrm[q+1]-1}]
Extensions
a(10)-a(11) from Michel Marcus, Feb 20 2025
a(12) and beyond from David Consiglio, Jr., Feb 20 2025
Comments