cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A380989 Position of first appearance of n in A380958 (number of prime factors minus sum of distinct prime exponents).

Original entry on oeis.org

1, 6, 30, 210, 900, 7776, 27000, 279936, 810000, 9261000, 24300000, 362797056, 729000000, 13060694016, 21870000000, 408410100000, 656100000000, 16926659444736, 19683000000000, 609359740010496, 590490000000000, 18010885410000000, 17714700000000000
Offset: 0

Views

Author

Gus Wiseman, Feb 18 2025

Keywords

Comments

Is this sequence strictly increasing?
From David Consiglio, Jr., Feb 20 2025: (Start)
The answer to the question above is: no, a(21) < a(20). And all subsequent odd indexed terms are lower than their even predecessors.
All terms must be a product of x primes (with multiplicity) to the y power where x-y = n and x mod y = 0. There are very few combinations of numbers that meet these criteria, so checking all of them to find the minimum outcome is quite fast.
Example --> n=5
6 primes to the 1 power --> 6 distinct primes
2*3*5*7*11*13 = 30030
7 primes to the 2 power -- disallowed (5 mod 2 = 1)
8 primes to the 3 power -- disallowed (4 mod 3 = 1)
9 primes to the 4 power -- disallowed (9 mod 4 = 1)
10 primes to the 5 power --> 2 distinct primes
2*2*2*2*2*3*3*3*3*3 = 7776
The minimum value is 7776 and thus a(5) = 7776. (End)

Examples

			The terms together with their prime indices begin:
        1: {}
        6: {1,2}
       30: {1,2,3}
      210: {1,2,3,4}
      900: {1,1,2,2,3,3}
     7776: {1,1,1,1,1,2,2,2,2,2}
    27000: {1,1,1,2,2,2,3,3,3}
   279936: {1,1,1,1,1,1,1,2,2,2,2,2,2,2}
   810000: {1,1,1,1,2,2,2,2,3,3,3,3}
  9261000: {1,1,1,2,2,2,3,3,3,4,4,4}
		

Crossrefs

Position of first appearance of n in A001222 - A136565.
For factors instead of exponents we have A280286 (sorted A381075), firsts of A280292.
For indices instead of exponents we have A380956 (sorted A380957), firsts of A380955.
A000040 lists the primes, differences A001223.
A005361 gives product of prime exponents.
A055396 gives least prime index, greatest A061395.
A056239 (reverse A296150) adds up prime indices, row sums of A112798.
A124010 lists prime exponents (signature); A001221, A051903, A051904.

Programs

  • Mathematica
    prisig[n_]:=If[n==1,{},Last/@FactorInteger[n]];
    q=Table[Total[prisig[n]]-Total[Union[prisig[n]]],{n,10000}];
    mnrm[s_]:=If[Min@@s==1,mnrm[DeleteCases[s-1,0]]+1,0];
    Table[Position[q,k][[1,1]],{k,0,mnrm[q+1]-1}]

Extensions

a(10)-a(11) from Michel Marcus, Feb 20 2025
a(12) and beyond from David Consiglio, Jr., Feb 20 2025