cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A381007 Ordered hypotenuses of the Pythagorean triangles defined by a = 2^(4n) + 2^(2n+1), b = 2^(4n) - 2^(4n-2) - 2^(2n) - 1, c = 2^(4n) + 2^(4n-2) + 2^(2n) + 1.

Original entry on oeis.org

25, 337, 5185, 82177, 1311745, 20975617, 335560705, 5368774657, 85899608065, 1374390583297, 21990236749825, 351843737665537, 5629499601321985, 90071992815845377, 1441151881832300545, 23058430096431906817, 368934881491370901505, 5902958103655775993857
Offset: 1

Views

Author

Robert C. Lyons, Feb 12 2025

Keywords

Comments

Proper subset of A020882.
Conjecture: These Pythagorean triangles are primitive. Verified up to n=100000.
The preceding conjecture is true, since, for n>=1, the values of a,b,c are given by Euclid's formula for generating Pythagorean triples: a=2xy, b=x^2-y^2, c=x^2+y^2 with x=2^(2n) and y=2^(2n-1)+1 and x and y are coprime and x is even and y is odd. - Chai Wah Wu, Feb 13 2025

Crossrefs

Cf. A020882.
Cf. A381005 (short legs), A381006 (long legs), A381008 (perimeters), A381009 (areas).

Programs

  • Magma
    [2^(4*n) + 2^(4*n-2) + 2^(2*n) + 1: n in [1..20]];
    
  • Mathematica
    A381007[n_] := 5*4^(2*n - 1) + 4^n + 1; Array[A381007, 20] (* or *)
    LinearRecurrence[{21, -84, 64}, {25, 337, 5185}, 20] (* Paolo Xausa, Feb 26 2025 *)
  • PARI
    a(n) = 2^(4*n) + 2^(4*n-2) + 2^(2*n) + 1
    
  • Python
    def A381007(n): return (m:=1<<(n<<1)-1)*(5*m+2)+1 # Chai Wah Wu, Feb 13 2025

Formula

a(n) = 2^(4n) + 2^(4n-2) + 2^(2n) + 1.
a(n) = sqrt( A381005(n)^2 + A381006(n)^2 ).
G.f.: (25 - 188*x + 208*x^2)/((1 - x)*(1 - 4*x)*(1 - 16*x)). - Stefano Spezia, Feb 13 2025