A381007 Ordered hypotenuses of the Pythagorean triangles defined by a = 2^(4n) + 2^(2n+1), b = 2^(4n) - 2^(4n-2) - 2^(2n) - 1, c = 2^(4n) + 2^(4n-2) + 2^(2n) + 1.
25, 337, 5185, 82177, 1311745, 20975617, 335560705, 5368774657, 85899608065, 1374390583297, 21990236749825, 351843737665537, 5629499601321985, 90071992815845377, 1441151881832300545, 23058430096431906817, 368934881491370901505, 5902958103655775993857
Offset: 1
Links
- Paolo Xausa, Table of n, a(n) for n = 1..800
- John D. Cook, Sparse binary Pythagorean triples (2025).
- H. S. Uhler, A Colossal Primitive Pythagorean Triangle, The American Mathematical Monthly, Vol. 57, No. 5 (May, 1950), pp. 331-332.
- Wikipedia, Pythagorean triple.
- Index entries for linear recurrences with constant coefficients, signature (21,-84,64).
Crossrefs
Programs
-
Magma
[2^(4*n) + 2^(4*n-2) + 2^(2*n) + 1: n in [1..20]];
-
Mathematica
A381007[n_] := 5*4^(2*n - 1) + 4^n + 1; Array[A381007, 20] (* or *) LinearRecurrence[{21, -84, 64}, {25, 337, 5185}, 20] (* Paolo Xausa, Feb 26 2025 *)
-
PARI
a(n) = 2^(4*n) + 2^(4*n-2) + 2^(2*n) + 1
-
Python
def A381007(n): return (m:=1<<(n<<1)-1)*(5*m+2)+1 # Chai Wah Wu, Feb 13 2025
Formula
a(n) = 2^(4n) + 2^(4n-2) + 2^(2n) + 1.
G.f.: (25 - 188*x + 208*x^2)/((1 - x)*(1 - 4*x)*(1 - 16*x)). - Stefano Spezia, Feb 13 2025
Comments