cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A381097 Consider the polynomial P(m,z) = Sum_{i=1..k} d(i)*z^(i-1) where d(1), d(2), ..., d(k) are the k divisors of m. The sequence lists the numbers m such that P(m,z) is irreducible.

Original entry on oeis.org

2, 3, 4, 5, 7, 9, 11, 12, 13, 16, 17, 19, 23, 24, 25, 29, 30, 31, 36, 37, 40, 41, 43, 45, 47, 48, 49, 53, 56, 59, 60, 61, 63, 64, 67, 70, 71, 72, 73, 79, 80, 81, 83, 84, 89, 90, 96, 97, 101, 103, 105, 107, 108, 109, 112, 113, 120, 121, 126, 127, 131, 132, 135
Offset: 1

Views

Author

Michel Lagneau, Feb 14 2025

Keywords

Comments

The squares>1 and the prime numbers are in the sequence.

Examples

			The prime numbers q are in the sequence because P(q,z) = qz + 1.
6 is not in the sequence because P(6,z)=(2z+1)*(3z^2+1).
The following table gives the irreducible polynomials.
+-----------------------------------------------------------+
|  m |                 P(m,z)                               |
+-----------------------------------------------------------+
|  4 | 1 + 2z + 4z^2                                        |
+-----------------------------------------------------------+
|  9 | 1 + 3z + 9z^2                                        |
+-----------------------------------------------------------+
| 12 | 1 + 2z + 3z^2 + 4z^3 + 6z^4 + 12z^5                  |
+-----------------------------------------------------------+
| 16 | 1 + 2z + 4z^2 + 8z^3 + 16z^4                         |
+----------------------------+------------------------------+
| 24 | 1 + 2z + 3z^2 + 4z^3 + 6z^4 + 8z^5 + 12z^6 + 24z^7   |
+-----------------------------------------------------------+
| 25 | 1 + 5z + 25z^2                                       |
+-----------------------------------------------------------+
| 30 | 1 + 2z + 3z^2 + 5z^3 + 6z^4 + 10z^5 + 15z^6 + 30z^7  |
+-----------------------------------------------------------+
		

Crossrefs

Cf. A291127.

Programs

  • Maple
    with(numtheory):
    for n from 1 to 135 do :
      it:=0:d:=divisors(n):P:=add(op(i,d)*x^(i-1),i=1..nops(d)):
       y:=fsolve(P,x,complex):z:=evalf({%}):k:=nops(z):
        if irreduc(P) then printf(`%d, `,n):else fi:
    od:
  • PARI
    isok(n) = my(d=divisors(n)); polisirreducible(sum(i=1, #d, d[i]*z^(i-1))); \\ Michel Marcus, Feb 14 2025