A381136 a(n) is the number of divisors d of n such that tau(d^(1 + n) + n) = 2^omega(d^(1 + n) + n), where tau = A000005 and omega = A001221.
1, 2, 0, 1, 2, 4, 0, 0, 1, 3, 0, 2, 2, 3, 0, 1, 0, 2, 0, 2, 4, 2, 0, 1, 1, 2, 0, 2, 2, 8, 0, 1, 4, 4, 0, 1, 2, 3, 0, 2, 2, 7, 0, 1, 2, 4, 0, 1, 0, 2, 0, 2, 0, 2, 0, 2, 4, 2, 0, 3, 2, 2, 0, 1, 4, 8, 0, 2, 3, 5, 0, 1, 2, 3, 0, 2, 4, 8, 0, 1, 1, 3, 0, 4, 4, 4, 0
Offset: 1
Keywords
Programs
-
Magma
[#[d: d in Divisors(n) | #Divisors(d^(1+n)+n) eq 2^#PrimeDivisors(d^(1+n)+n)]: n in [1..50]];
-
Mathematica
Table[Length[Select[Divisors[n],DivisorSigma[0,#^(1+n)+n]==2^PrimeNu[#^(1+n)+n]&]],{n,45}] (* James C. McMahon, Mar 05 2025 *)
-
PARI
a(n) = sumdiv(n, d, my(f=factor(d^(1 + n) + n)); numdiv(f) == 2^omega(f)); \\ Michel Marcus, Feb 15 2025
Extensions
More terms from Jinyuan Wang, Mar 09 2025