cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-2 of 2 results.

A381138 a(n) is the number of divisors d of n such that tau(n^(1 + d) + d) = 2^omega(n^(1 + d) + d), where tau = A000005 and omega = A001221.

Original entry on oeis.org

1, 2, 1, 2, 2, 4, 0, 2, 1, 4, 1, 4, 2, 3, 2, 2, 1, 3, 1, 4, 2, 2, 1, 3, 2, 4, 1, 4, 2, 8, 1, 1, 2, 3, 2, 4, 2, 2, 2, 4, 1, 8, 0, 4, 2, 4, 1, 3, 1, 4, 2, 3, 1, 4, 2, 4, 1, 4, 1, 7, 2, 4, 2, 2, 4, 8, 1, 1, 1, 5, 1, 3, 2, 4, 2, 4, 2, 8, 1, 3, 1, 2, 1, 7, 3, 4, 2
Offset: 1

Views

Author

Juri-Stepan Gerasimov, Feb 15 2025

Keywords

Comments

a(n) is the number of divisors d of n such that n^(1 + d) + d is squarefree.

Crossrefs

Programs

  • Magma
    [#[d: d in Divisors(n) | #Divisors(n^(1+d)+d) eq 2^#PrimeDivisors(n^(1+d)+d)]: n in [1..40]];
    
  • Mathematica
    Table[DivisorSum[n, 1 &, SquareFreeQ[n^(1 + #) + #] &], {n, 50}] (* Michael De Vlieger, Mar 09 2025 *)
  • PARI
    a(n) = sumdiv(n, d, my(f=factor(n^(1+d)+d)); numdiv(f) == 2^omega(f)) \\ Michel Marcus, Feb 19 2025

Extensions

More terms from Jinyuan Wang, Mar 09 2025

A381733 Number of divisors d of n such that 2^omega(n + d) = tau(n + d), where omega = A001221 and tau = A000005.

Original entry on oeis.org

1, 1, 1, 2, 2, 1, 1, 1, 1, 2, 1, 3, 2, 2, 1, 1, 1, 2, 1, 3, 2, 2, 1, 2, 2, 1, 1, 4, 2, 3, 1, 2, 2, 2, 2, 4, 2, 2, 2, 2, 2, 1, 1, 3, 1, 2, 1, 1, 0, 2, 1, 3, 1, 2, 2, 3, 2, 2, 1, 5, 2, 1, 2, 2, 4, 3, 1, 4, 2, 3, 1, 3, 2, 1, 1, 4, 2, 2, 1, 2, 1, 2, 1, 5, 3, 2, 1, 2, 1, 4, 1, 4, 2, 2, 2, 2, 1, 1, 2, 4
Offset: 1

Views

Author

Juri-Stepan Gerasimov, Mar 05 2025

Keywords

Crossrefs

Programs

  • Magma
    [#[d: d in Divisors(n) | 2^#PrimeDivisors(n+d) eq #Divisors(n+d)]: n in [1..100]];
  • Mathematica
    a[n_]:=Length[Select[Divisors[n], DivisorSigma[0, #+n]==2^PrimeNu[#+n]&]]; Array[a,100] (* Stefano Spezia, Mar 07 2025 *)
Showing 1-2 of 2 results.