cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-2 of 2 results.

A000319 a(n) = floor(b(n)), where b(n) = tan(b(n-1)), b(0)=1.

Original entry on oeis.org

1, 1, 74, -1, -2, -3, 0, 1, 30, -2, -2, 29, 1, 4, -6, 0, 1, 2, -1, -1, -1, -1, -2, -9, 0, 0, 1, 2, -2, -35, -1, -1, -1, -1, -1, -1, -1, -2, -3, 0, 0, 1, 5, -2, -2, 3, 1, 1, -4, -1, -1, -1, -1, -1, -1, -1, -1, -2, -3, 1, 2, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -2, -3, 0, 1, 2, -1, -2, -21, -7, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0
Offset: 0

Views

Author

Keywords

Comments

Using 3000-digit precision, interval arithmetic provides an efficient method of computing over 2000000 terms of this sequence. The iteration is stopped when an interval contains an integer. So far, no term equals 319. - T. D. Noe, Mar 07 2008
The question whether 319 occurs is relevant for sequences A053169 and A053873. - Antti Karttunen and M. F. Hasler, Mar 01 2025

Examples

			From _José María Grau Ribas_, Apr 13 2010: (Start)
For n=2, tan(tan(1)) = 74.68... (A085665), so a(2)=74.
For n=3, tan(tan(tan(1))) = -0.8635... (A085666), so a(3)=-1. (End)
		

Crossrefs

See A381230 (resp. A381231) for when n (resp. -n) appears.
Cf. A000329 (with round).

Programs

A381231 Index of first occurrence of -n in A000319, or -1 if -n never appears there.

Original entry on oeis.org

6, 3, 4, 5, 48, 15642, 14, 87, 924, 23, 1074, 1066, 14524, 7051, 15000, 71709, 57604, 57554, 2056626, 2036049, 16068, 86, 934, 37142, 57439, 72635, 57342, 1394559, 358329, 2112076, 16941, 2015018, 57124, 27572, 1837444, 29, 2058540, 54694, 2075246, 359870, 76579, 7844, 61424, 55065, 61434, 2016279, 71877, 2271483, 305269, 57405, 1842679
Offset: 0

Views

Author

N. J. A. Sloane, Feb 28 2025

Keywords

Comments

If a(54) is not -1, then a(54) > 14333074. - Tim Peters, Mar 13 2025

Crossrefs

Extensions

a(5)-a(17) from Hugo Pfoertner, Feb 28 2025
a(18)-a(50) from Tim Peters, Mar 01 2025
Showing 1-2 of 2 results.