A381514 a(n) is the hafnian of a symmetric Toeplitz matrix of order 2*n whose off-diagonal element (i,j) equals the |i-j|-th prime.
1, 2, 23, 899, 85072, 15120411, 4439935299, 1989537541918, 1264044973158281, 1090056235155152713, 1227540523199054294506
Offset: 0
Examples
a(2) = 23 because the hafnian of [d 2 3 5] [2 d 2 3] [3 2 d 2] [5 3 2 d] equals M_{1,2}*M_{3,4} + M_{1,3}*M_{2,4} + M_{1,4}*M_{2,3} = 2*2 + 3*3 + 5*2 = 23. Here d denotes the generic element on the main diagonal of the matrix from which the hafnian does not depend.
Links
- Wikipedia, Hafnian.
- Wikipedia, Symmetric matrix.
- Wikipedia, Toeplitz Matrix.
Programs
-
Mathematica
M[i_, j_]:=Prime[Abs[i-j]]; a[n_]:=Sum[Product[M[Part[PermutationList[s, 2n], 2i-1], Part[PermutationList[s, 2n], 2i]], {i, n}], {s, SymmetricGroup[2n]//GroupElements}]/(n!*2^n); Array[a, 5, 0]
Extensions
a(5)-a(10) from Pontus von Brömssen, Feb 26 2025