A381651 Decimal expansion of the multiple zeta value (Euler sum) zetamult(4,1).
0, 9, 6, 5, 5, 1, 1, 5, 9, 9, 8, 9, 4, 4, 3, 7, 3, 4, 4, 6, 5, 6, 4, 5, 5, 3, 1, 4, 2, 8, 9, 4, 2, 7, 6, 4, 0, 3, 2, 0, 1, 0, 3, 7, 2, 3, 4, 3, 6, 9, 1, 4, 1, 5, 2, 5, 2, 5, 6, 3, 0, 7, 8, 7, 5, 2, 8, 9, 2, 1, 4, 5, 4, 2, 5, 9, 5, 8, 7, 6, 1, 4, 1, 7, 7, 0, 1, 8, 4, 0, 5, 9, 2, 5, 1, 7, 0, 6, 5, 3, 8, 7, 1, 4, 6, 3
Offset: 0
Examples
0.0965511599894437344656455314289...
Links
Programs
-
Mathematica
RealDigits[2 Zeta[5] - Zeta[2] Zeta[3], 10, 105][[1]] (* slowly convergent *) sum = 0; Monitor[Do[Do[sum = sum + N[1/(m^4 n)], {n, 1, m - 1}, 50], {m, 2, 10000}], m]; Print[sum]
-
PARI
zetamult([4,1])
Formula
zetamult(4,1) = Sum_{m>=2} (Sum_{n=1..m-1} 1/(m^4*n)) = 2*zeta(5) - zeta(2)*zeta(3) = zetamult(3,1,1).