cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-7 of 7 results.

A381653 Decimal expansion of the multiple zeta value (Euler sum) zetamult(2,2,2).

Original entry on oeis.org

1, 9, 0, 7, 5, 1, 8, 2, 4, 1, 2, 2, 0, 8, 4, 2, 1, 3, 6, 9, 6, 4, 7, 2, 1, 1, 1, 8, 3, 5, 7, 9, 7, 5, 9, 8, 9, 8, 1, 5, 9, 0, 7, 7, 9, 3, 8, 1, 1, 6, 0, 0, 4, 2, 8, 4, 5, 4, 5, 1, 6, 2, 4, 5, 0, 0, 8, 1, 2, 2, 8, 4, 2, 9, 4, 1, 1, 7, 1, 0, 5, 8, 5, 3, 0, 2, 0, 1, 2, 0, 8, 6, 3, 4, 7, 5, 3, 4, 4, 4, 7, 4, 4, 2, 7
Offset: 0

Views

Author

Artur Jasinski, Mar 03 2025

Keywords

Examples

			0.1907518241220842136964721118357975989
		

Crossrefs

Programs

  • Mathematica
    RealDigits[3 Zeta[6]/16, 10, 105][[1]]
  • PARI
    zetamult([2,2,2])

Formula

Equals 3*A013664/16.

A381652 Decimal expansion of the multiple zeta value (Euler sum) zetamult(2,1,3).

Original entry on oeis.org

6, 1, 8, 3, 4, 9, 5, 6, 0, 5, 7, 1, 2, 6, 9, 3, 0, 7, 8, 9, 5, 6, 3, 9, 2, 6, 0, 8, 5, 1, 8, 6, 4, 8, 9, 8, 2, 6, 3, 5, 0, 8, 6, 9, 5, 1, 1, 2, 1, 9, 5, 1, 5, 5, 1, 3, 4, 4, 7, 7, 1, 2, 2, 3, 9, 5, 0, 6, 3, 9, 5, 7, 5, 2, 3, 5, 1, 3, 3, 0, 9, 9, 3, 6, 4, 3, 9, 2, 4, 1, 4, 4, 3, 4, 5, 7, 6, 5, 4, 6, 0, 4, 0, 8, 0
Offset: 0

Views

Author

Artur Jasinski, Mar 03 2025

Keywords

Examples

			0.618349560571269307895639260851864...
		

Crossrefs

Programs

  • Mathematica
    RealDigits[Zeta[3]^2 - 13 Zeta[6]/16, 10, 105][[1]]
  • PARI
    zetamult([2,1,3])

Formula

Equals zeta(3)^2 - 13*zeta(6)/16.

A381654 Decimal expansion of the multiple zeta value (Euler sum) zetamult(2,3,1) = zetamult(3,1,2).

Original entry on oeis.org

0, 7, 9, 2, 2, 1, 3, 9, 7, 5, 6, 5, 2, 0, 7, 1, 6, 5, 9, 9, 9, 0, 3, 2, 8, 1, 0, 0, 7, 7, 8, 0, 1, 0, 9, 1, 6, 7, 4, 2, 4, 3, 8, 4, 8, 5, 1, 0, 0, 5, 1, 9, 3, 7, 8, 7, 1, 5, 0, 1, 2, 2, 3, 4, 9, 5, 0, 2, 4, 4, 5, 3, 0, 4, 4, 7, 9, 2, 5, 3, 8, 2, 0, 8, 5, 0, 2, 8, 8, 6, 8, 3, 6, 4, 8, 8, 9, 4, 7, 2, 6, 4, 4, 6, 8, 6
Offset: 0

Views

Author

Artur Jasinski, Mar 05 2025

Keywords

Examples

			0.0792213975652071659990328100778...
		

Crossrefs

Programs

  • Mathematica
    kk = RealDigits[53 Zeta[6]/24 - 3 Zeta[3]^2/2, 10, 105][[1]]; Prepend[kk, 0]
  • PARI
    zetamult([3, 1, 2])

Formula

Equals 53*zeta(6)/24 - 3*zeta(3)^2/2.

A381655 Decimal expansion of the multiple zeta value (Euler sum) zetamult(5,1) = zetamult(3, 1, 1, 1).

Original entry on oeis.org

0, 4, 0, 5, 3, 6, 8, 9, 7, 2, 7, 1, 5, 1, 9, 7, 3, 7, 8, 2, 9, 0, 4, 5, 9, 0, 7, 9, 3, 9, 6, 9, 6, 4, 8, 2, 3, 3, 4, 4, 9, 5, 4, 1, 4, 6, 4, 2, 6, 9, 5, 8, 3, 4, 3, 1, 6, 0, 8, 9, 4, 1, 7, 0, 5, 3, 9, 5, 7, 2, 0, 9, 1, 1, 0, 7, 9, 1, 3, 7, 2, 4, 2, 8, 9, 8, 3, 9, 3, 4, 1, 9, 4, 6, 4, 2, 6, 3, 7, 5, 6, 7, 7, 4, 3, 4, 3
Offset: 0

Views

Author

Artur Jasinski, Mar 11 2025

Keywords

Comments

For complete list of formulas of the positive multiple zeta values up to weight 6 see A381651.

Examples

			0.04053689727151973782904590793969648...
		

Crossrefs

Programs

  • Mathematica
    RealDigits[3*Zeta[6]/4 - Zeta[3]^2/2, 10, 106][[1]]
  • PARI
    zetamult([3,1,1,1])

Formula

zetamult(5,1) = Sum_{m>=2} (Sum_{n=1..m-1} 1/(m^5*n)) = 3*zeta(6)/4 - zeta(3)^2/2 = zetamult(3,1,1,1).

A381656 Decimal expansion of the multiple zeta value (Euler sum) zetamult(3,2,1).

Original entry on oeis.org

0, 3, 2, 3, 0, 9, 0, 2, 8, 9, 9, 1, 6, 6, 9, 8, 8, 1, 6, 9, 8, 4, 0, 6, 4, 9, 1, 6, 8, 0, 1, 9, 5, 4, 1, 5, 6, 3, 3, 1, 0, 3, 0, 8, 2, 3, 6, 1, 0, 5, 6, 1, 6, 7, 1, 0, 2, 4, 4, 9, 1, 7, 7, 5, 1, 0, 7, 6, 3, 3, 7, 8, 2, 0, 4, 5, 3, 2, 0, 2, 9, 4, 3, 6, 0, 1, 4, 3, 4, 7, 1, 9, 0, 4, 9, 7, 4, 4, 9, 9, 4, 5, 4, 9, 0, 0, 2
Offset: 0

Views

Author

Artur Jasinski, Mar 11 2025

Keywords

Examples

			0.0323090289916698816984064916802...
		

Crossrefs

Programs

  • Mathematica
    RealDigits[-203 Zeta[6]/48 + 3 Zeta[3]^2, 10, 106][[1]]
  • PARI
    zetamult([3,2,1])

Formula

Equals -203*zeta(6)/48 + 3*zeta(3)^2.

A381657 Decimal expansion of the multiple zeta value (Euler sum) zetamult(4, 1, 1).

Original entry on oeis.org

0, 1, 7, 4, 8, 9, 8, 5, 3, 1, 6, 9, 0, 1, 1, 4, 0, 4, 4, 2, 5, 9, 3, 4, 4, 4, 5, 2, 6, 7, 4, 6, 0, 4, 3, 1, 6, 7, 5, 1, 2, 7, 2, 3, 6, 1, 5, 8, 3, 3, 8, 3, 2, 1, 0, 1, 7, 0, 2, 8, 2, 9, 2, 6, 0, 7, 6, 4, 3, 6, 5, 6, 7, 9, 0, 2, 1, 0, 3, 7, 6, 2, 4, 0, 2, 9, 4, 4, 9, 4, 7, 6, 8, 1, 2, 6, 8, 2, 6, 9, 7, 7, 3, 4, 4, 4, 1
Offset: 0

Views

Author

Artur Jasinski, Mar 19 2025

Keywords

Examples

			0.0174898531690114044259344452675...
		

Crossrefs

Programs

  • Mathematica
    RealDigits[23 Zeta[6]/16 - Zeta[3]^2, 10, 106][[1]]
  • PARI
    zetamult([4,1,1])

Formula

Equals 23*A013664/16 - A002117^2.

A381394 Decimal expansion of the multiple zeta value zetamult(8,2).

Original entry on oeis.org

0, 0, 4, 1, 2, 2, 4, 6, 9, 6, 7, 8, 3, 9, 9, 8, 3, 2, 2, 2, 4, 0, 4, 6, 9, 5, 6, 8, 3, 8, 6, 9, 4, 2, 0, 8, 8, 5, 5, 8, 1, 2, 6, 2, 7, 3, 5, 8, 4, 6, 8, 5, 6, 9, 2, 8, 5, 2, 4, 5, 5, 1, 7, 9, 2, 8, 7, 1, 7, 1, 1, 1, 2, 7, 7, 4, 0, 6, 3, 8, 8, 3, 3, 1, 2, 7, 5, 9, 4, 5, 3, 4, 5, 2, 4, 3, 4, 1, 7, 3, 8, 8, 1, 7, 4
Offset: 0

Views

Author

R. J. Mathar, Feb 22 2025

Keywords

Examples

			0.004122469678399832224046956838694208855812627358468569285245...
		

Crossrefs

MZV's zetamult(a,b): A072691 (zetamult(1,1)), A258983 (zetamult(3,2)), A258984 (4,2), A258985 (5,2), A258947 (6,2), A258987 (3,3), A258988 (4,3), A258982 (5,3), A258989 (2,4), A258990 (3,4), A258991 (4,4), A381651 (4,1).

Programs

  • Mathematica
    RealDigits[N[MZV[{8, 2}], 120], 10, 105, -1][[1]] (* Amiram Eldar, Feb 25 2025 using the HPL Package *)
  • PARI
    zetamult([8, 2]) \\ Amiram Eldar, Feb 25 2025

Formula

zeta(r,s) = Sum_{1 <= m < n} 1/(m^s n^r).

Extensions

More terms from Amiram Eldar, Feb 25 2025
Name corrected by Peter Bala, Aug 15 2025
Showing 1-7 of 7 results.