A381655 Decimal expansion of the multiple zeta value (Euler sum) zetamult(5,1) = zetamult(3, 1, 1, 1).
0, 4, 0, 5, 3, 6, 8, 9, 7, 2, 7, 1, 5, 1, 9, 7, 3, 7, 8, 2, 9, 0, 4, 5, 9, 0, 7, 9, 3, 9, 6, 9, 6, 4, 8, 2, 3, 3, 4, 4, 9, 5, 4, 1, 4, 6, 4, 2, 6, 9, 5, 8, 3, 4, 3, 1, 6, 0, 8, 9, 4, 1, 7, 0, 5, 3, 9, 5, 7, 2, 0, 9, 1, 1, 0, 7, 9, 1, 3, 7, 2, 4, 2, 8, 9, 8, 3, 9, 3, 4, 1, 9, 4, 6, 4, 2, 6, 3, 7, 5, 6, 7, 7, 4, 3, 4, 3
Offset: 0
Examples
0.04053689727151973782904590793969648...
Programs
-
Mathematica
RealDigits[3*Zeta[6]/4 - Zeta[3]^2/2, 10, 106][[1]]
-
PARI
zetamult([3,1,1,1])
Formula
zetamult(5,1) = Sum_{m>=2} (Sum_{n=1..m-1} 1/(m^5*n)) = 3*zeta(6)/4 - zeta(3)^2/2 = zetamult(3,1,1,1).
Comments