cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-2 of 2 results.

A381655 Decimal expansion of the multiple zeta value (Euler sum) zetamult(5,1) = zetamult(3, 1, 1, 1).

Original entry on oeis.org

0, 4, 0, 5, 3, 6, 8, 9, 7, 2, 7, 1, 5, 1, 9, 7, 3, 7, 8, 2, 9, 0, 4, 5, 9, 0, 7, 9, 3, 9, 6, 9, 6, 4, 8, 2, 3, 3, 4, 4, 9, 5, 4, 1, 4, 6, 4, 2, 6, 9, 5, 8, 3, 4, 3, 1, 6, 0, 8, 9, 4, 1, 7, 0, 5, 3, 9, 5, 7, 2, 0, 9, 1, 1, 0, 7, 9, 1, 3, 7, 2, 4, 2, 8, 9, 8, 3, 9, 3, 4, 1, 9, 4, 6, 4, 2, 6, 3, 7, 5, 6, 7, 7, 4, 3, 4, 3
Offset: 0

Views

Author

Artur Jasinski, Mar 11 2025

Keywords

Comments

For complete list of formulas of the positive multiple zeta values up to weight 6 see A381651.

Examples

			0.04053689727151973782904590793969648...
		

Crossrefs

Programs

  • Mathematica
    RealDigits[3*Zeta[6]/4 - Zeta[3]^2/2, 10, 106][[1]]
  • PARI
    zetamult([3,1,1,1])

Formula

zetamult(5,1) = Sum_{m>=2} (Sum_{n=1..m-1} 1/(m^5*n)) = 3*zeta(6)/4 - zeta(3)^2/2 = zetamult(3,1,1,1).

A381656 Decimal expansion of the multiple zeta value (Euler sum) zetamult(3,2,1).

Original entry on oeis.org

0, 3, 2, 3, 0, 9, 0, 2, 8, 9, 9, 1, 6, 6, 9, 8, 8, 1, 6, 9, 8, 4, 0, 6, 4, 9, 1, 6, 8, 0, 1, 9, 5, 4, 1, 5, 6, 3, 3, 1, 0, 3, 0, 8, 2, 3, 6, 1, 0, 5, 6, 1, 6, 7, 1, 0, 2, 4, 4, 9, 1, 7, 7, 5, 1, 0, 7, 6, 3, 3, 7, 8, 2, 0, 4, 5, 3, 2, 0, 2, 9, 4, 3, 6, 0, 1, 4, 3, 4, 7, 1, 9, 0, 4, 9, 7, 4, 4, 9, 9, 4, 5, 4, 9, 0, 0, 2
Offset: 0

Views

Author

Artur Jasinski, Mar 11 2025

Keywords

Examples

			0.0323090289916698816984064916802...
		

Crossrefs

Programs

  • Mathematica
    RealDigits[-203 Zeta[6]/48 + 3 Zeta[3]^2, 10, 106][[1]]
  • PARI
    zetamult([3,2,1])

Formula

Equals -203*zeta(6)/48 + 3*zeta(3)^2.
Showing 1-2 of 2 results.