cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-7 of 7 results.

A089139 Decimal expansion of e^4 - 3*e^3 + 2*e^2 - e/6.

Original entry on oeis.org

8, 6, 6, 6, 6, 0, 4, 4, 9, 0, 0, 3, 2, 6, 9, 5, 4, 3, 7, 2, 2, 5, 4, 7, 9, 2, 4, 8, 3, 7, 3, 6, 2, 9, 9, 2, 1, 8, 9, 4, 7, 7, 0, 1, 4, 8, 4, 3, 8, 6, 5, 3, 0, 1, 1, 7, 0, 2, 8, 8, 5, 6, 4, 3, 2, 1, 4, 9, 2, 5, 9, 5, 2, 7, 5, 9, 1, 3, 9, 2, 1, 5, 7, 3, 6, 8, 8, 3, 6, 8, 8, 2, 5, 6, 3, 9, 6, 8, 8, 7, 9, 6, 6, 2, 2
Offset: 1

Views

Author

Brian Dunfield (brian.dunfield(AT)sympatico.ca), Dec 05 2003

Keywords

Comments

Expected number of picks from a uniform [0,1] needed to first exceed a sum of 4.

Examples

			8.66660449003269543722547924837362992189477014843865301170288564321492595275913921...
		

References

  • J. V. Uspensky, Introduction to Mathematical Probability, New York: McGraw-Hill, 1937.

Crossrefs

Programs

Formula

Equals Sum_{k=0..n} (-1)^k * (n-k+1)^k * exp(n-k+1) / k! for n = 3 (Uspensky, 1937, p. 278).

Extensions

Edited and extended by Robert G. Wilson v and Ray Chandler, Dec 07 2003

A089087 Triangular array of coefficients multiplied by n! of polynomials in e. These give the expected number of trials needed for the sum of uniform random variables from the interval [0,1] to exceed n+1.

Original entry on oeis.org

1, 1, -1, 2, -4, 1, 6, -18, 12, -1, 24, -96, 108, -32, 1, 120, -600, 960, -540, 80, -1, 720, -4320, 9000, -7680, 2430, -192, 1, 5040, -35280, 90720, -105000, 53760, -10206, 448, -1, 40320, -322560, 987840, -1451520, 1050000, -344064, 40824, -1024, 1, 362880, -3265920, 11612160, -20744640, 19595520
Offset: 0

Views

Author

Brian Dunfield (brian.dunfield(AT)sympatico.ca), Dec 04 2003

Keywords

Comments

Expected number of uniform random choices of X from interval[0,1] so that their sum exceeds ...
1 is e/0!,
2 is (e^2-e)/1!,
3 is (2e^3-4e^2+e)/2!.

Examples

			Triangle begins:
       1,
       1,       -1,
       2,       -4,       1,
       6,      -18,      12,         -1,
      24,      -96,     108,        -32,        1,
     120,     -600,     960,       -540,       80,       -1,
     720,    -4320,    9000,      -7680,     2430,     -192,       1,
    5040,   -35280,   90720,    -105000,    53760,   -10206,     448,      -1,
   40320,  -322560,   987840,  -1451520,  1050000,  -344064,   40824,   -1024,    1,
  362880, -3265920, 11612160, -20744640, 19595520, -9450000, 2064384, -157464, 2304, -1,
  ...
		

References

  • J. Derbyshire, "Prime Obsession: Bernhard Riemann and the Greatest Unsolved...", Henry Press, 2003, footnote on page 366.
  • J. V. Uspenski, "Introduction to Mathematical Probability", McGraw Hill, 1937, p. 278.

Crossrefs

Programs

  • Mathematica
    f[n_] := Sum[(-1)^k*(n-k+1)^k*E^(n-k+1)/k!, {k, 0, n}]; (* f(0)=A001113=e, f(1)=A090142, f(2)=A090143, f(3)=A089139, f(4)=A090611 *)
    Table[n!*CoefficientList[f[n], E] // Reverse // Most, {n, 0, 9}] // Flatten (* Jean-François Alcover, Nov 05 2013 *)
  • Sage
    def A089087_row(n):
        R. = ZZ[]
        P = add((n-k+1)^k*x^(n-k+1)*factorial(n)/factorial(k) for k in (0..n))
        return [(-1)^i*P[n-i+1] for i in (0..n)]
    for n in (0..5): print(A089087_row(n))  # Peter Luschny, May 03 2013

Formula

T(n,k) = (-1)^k*n!*(n+1-k)^k/k!; k-th coefficient of n-th row for n >= 0 and k >= 0.
E.g.f.: 1/(exp(y*x)-x).

Extensions

Corrected and extended by Vladeta Jovovic, Dec 05 2003

A090611 Decimal expansion of (24*e^5 - 96*e^4 + 108*e^3 - 32*e^2 + e)/24.

Original entry on oeis.org

1, 0, 6, 6, 6, 6, 6, 2, 0, 6, 8, 6, 2, 2, 4, 1, 1, 8, 5, 8, 0, 1, 9, 0, 2, 7, 3, 7, 1, 9, 3, 2, 8, 4, 7, 0, 6, 8, 6, 0, 3, 1, 0, 2, 5, 8, 1, 0, 8, 4, 7, 5, 8, 3, 4, 3, 3, 2, 5, 7, 9, 3, 1, 9, 8, 1, 3, 3, 9, 6, 1, 0, 0, 4, 1, 2, 1, 6, 3, 4, 0, 7, 5, 3, 2, 8, 7, 8, 2, 0, 4, 3, 9, 2, 5, 0, 5, 0, 4, 3, 7, 9, 5, 8, 7
Offset: 2

Views

Author

Ray Chandler, Dec 07 2003

Keywords

Comments

Expected number of picks from a uniform [0,1] needed to first exceed a sum of 5.

Examples

			10.66666206862241185801902737193284706860310258108475834332579319813396100412163407...
		

References

  • J. V. Uspensky, Introduction to Mathematical Probability, New York: McGraw-Hill, 1937.

Crossrefs

Programs

  • Mathematica
    RealDigits[E^5 - 4*E^4 + 9*E^3/2 - 4*E^2/3 + E/24, 10, 120][[1]] (* Amiram Eldar, Jun 20 2023 *)
  • PARI
    exp(5)-4*exp(4)+9*exp(3)/2-4*exp(2)/3+exp(1)/24

Formula

Equals Sum_{k=0..n} (-1)^k * (n-k+1)^k * exp(n-k+1) / k! for n = 4 (Uspensky, 1937, p. 278).

Extensions

Offset corrected by R. J. Mathar, Feb 05 2009

A379601 Decimal expansion of (120e^6 - 600e^5 + 960e^4 - 540e^3 + 80e^2 - e) / 120.

Original entry on oeis.org

1, 2, 6, 6, 6, 6, 6, 7, 1, 4, 1, 3, 7, 8, 1, 2, 1, 4, 0, 1, 3, 7, 1, 9, 3, 5, 7, 6, 2, 6, 8, 4, 9, 1, 1, 1, 9, 5, 6, 4, 7, 4, 3, 7, 0, 7, 7, 7, 4, 0, 1, 9, 6, 7, 5, 6, 7, 1, 0, 5, 3, 7, 5, 5, 6, 8, 2, 6, 0, 2, 8, 7, 6, 9, 4, 0, 6, 7, 8, 4, 2, 4, 8, 7, 0, 0, 5, 6, 0, 0, 9, 8, 0, 3, 5, 2, 2, 4, 0, 2, 0, 7, 8, 0, 7, 5, 9, 7, 6, 1, 6
Offset: 2

Views

Author

Daniel Mondot, Feb 27 2025

Keywords

Comments

Expected number of picks from a uniform [0,1] needed to first exceed a sum of 6.

Examples

			12.6666671413781214013719357626849111...
		

References

  • J. V. Uspensky, Introduction to Mathematical Probability, New York: McGraw-Hill, 1937.

Crossrefs

Programs

  • Mathematica
    RealDigits[E^6 - 5*E^5 + 8*E^4 - 9*E^3/2 + 2*E^2/3 - E/120, 10, 120][[1]]
  • PARI
    exp(6)-5*exp(5)+8*exp(4)-9*exp(3)/2+2*exp(2)/3-exp(1)/120

Formula

Equals Sum_{k=0..n} (-1)^k * (n-k+1)^k * exp(n-k+1) / k! for n = 5 (Uspensky, 1937, p. 278).

A381843 Decimal expansion of (40320*e^9 - 322560*e^8 + 987840*e^7 - 1451520*e^6 + 1050000*e^5 - 344064*e^4 + 40824*e^3 - 1024*e^2 + e) / 40320.

Original entry on oeis.org

1, 8, 6, 6, 6, 6, 6, 6, 6, 6, 5, 2, 7, 0, 3, 2, 1, 3, 4, 8, 9, 5, 5, 5, 2, 1, 7, 2, 2, 9, 4, 8, 5, 6, 9, 6, 1, 0, 0, 2, 7, 8, 4, 8, 3, 5, 6, 2, 1, 5, 5, 0, 7, 6, 9, 8, 4, 1, 6, 0, 8, 4, 6, 7, 9, 9, 2, 7, 1, 6, 2, 2, 2, 5, 3, 5, 9, 5, 2, 6, 2, 6, 5, 8, 1, 1, 3
Offset: 2

Views

Author

Daniel Mondot, Mar 12 2025

Keywords

Comments

Expected number of picks from a uniform [0,1] distribution needed to first exceed a sum of 9.

Examples

			18.66666666527032134895552...
		

References

  • J. V. Uspensky, Introduction to Mathematical Probability, New York: McGraw-Hill, 1937.

Crossrefs

Programs

  • Mathematica
    RealDigits[E^9 - 8*E^8 + 49*E^7/2 - 36*E^6 + 625*E^5/24 - 128*E^4/15 + 81*E^3/80 - 8*E^2/315 + E/40320, 10, 120][[1]]
  • PARI
    exp(9)-8*exp(8)+49*exp(7)/2-36*exp(6)+625*exp(5)/24-128*exp(4)/15+81*exp(3)/80-8*exp(2)/315+exp(1)/40320

Formula

Equals Sum_{k=0..n} (-1)^k * (n-k+1)^k * exp(n-k+1) / k! for n = 8 (Uspensky, 1937, p. 278).

A382020 Decimal expansion of (5040*e^8 - 35280*e^7 + 90720*e^6 - 105000*e^5 + 53760*e^4 - 10206*e^3 + 448*e^2 - e) / 5040.

Original entry on oeis.org

1, 6, 6, 6, 6, 6, 6, 6, 6, 7, 0, 4, 2, 6, 8, 8, 7, 8, 2, 3, 6, 6, 2, 3, 4, 7, 0, 0, 4, 3, 3, 2, 5, 8, 0, 4, 4, 9, 3, 6, 4, 9, 5, 7, 7, 5, 8, 9, 7, 0, 2, 0, 7, 0, 7, 8, 7, 1, 2, 8, 4, 1, 5, 7, 6, 3, 7, 6, 1, 8, 5, 7, 5, 9, 4, 9, 7, 2, 1, 4, 6, 2, 7, 6, 4, 6, 6, 0
Offset: 2

Views

Author

Daniel Mondot, Mar 12 2025

Keywords

Comments

Expected number of picks from a uniform [0,1] distribution needed to first exceed a sum of 8.

Examples

			16.6666666704268878236623470...
		

References

  • J. V. Uspensky, Introduction to Mathematical Probability, New York: McGraw-Hill, 1937.

Crossrefs

Programs

  • Mathematica
    RealDigits[E^8 - 7*E^7 + 18*E^6 - 125*E^5/6 + 32*E^4/3 - 81*E^3/40 + 4*E^2/45 - E/5040, 10, 120][[1]]
  • PARI
    exp(8)-7*exp(7)+18*exp(6)-125*exp(5)/6+32*exp(4)/3-81*exp(3)/40+4*exp(2)/45-exp(1)/5040

Formula

Equals Sum_{k=0..n} (-1)^k * (n-k+1)^k * exp(n-k+1) / k! for n = 7 (Uspensky, 1937, p. 278).

A382026 Decimal expansion of (362880*e^10 - 3265920*e^9 + 11612160*e^8 - 20744640*e^7 + 19595520*e^6 - 9450000*e^5 + 2064384*e^4 - 157464*e^3 + 2304*e^2 - e) / 362880.

Original entry on oeis.org

2, 0, 6, 6, 6, 6, 6, 6, 6, 6, 6, 4, 7, 6, 3, 1, 8, 8, 0, 0, 6, 1, 4, 1, 6, 3, 0, 9, 1, 0, 5, 9, 7, 6, 6, 4, 6, 8, 6, 5, 6, 8, 6, 0, 8, 2, 1, 5, 4, 4, 7, 4, 2, 3, 8, 4, 1, 9, 2, 0, 9, 0, 6, 0, 0, 0, 7, 3, 8, 5, 3, 6, 8, 8, 3, 6, 1, 5, 8, 9, 8, 2, 5, 8, 2, 3, 4, 5
Offset: 2

Views

Author

Daniel Mondot, Mar 12 2025

Keywords

Comments

Expected number of picks from a uniform [0,1] distribution needed to first exceed a sum of 10.

Examples

			20.666666666476318800614163...
		

References

  • J. V. Uspensky, Introduction to Mathematical Probability, New York: McGraw-Hill, 1937.

Crossrefs

Programs

  • Mathematica
    RealDigits[E^10 - 9*E^9 + 32*E^8 - 343*E^7/6 + 54*E^6 - 625*E^5/24 + 256*E^4/45 - 243*E^3/560 + 2*E^2/315 - E/362880, 10, 120][[1]]
  • PARI
    exp(10)-9*exp(9)+32*exp(8)-343*exp(7)/6+54*exp(6)-625*exp(5)/24+256*exp(4)/45-243*exp(3)/560+2*exp(2)/315-exp(1)/362880

Formula

Equals Sum_{k=0..n} (-1)^k * (n-k+1)^k * exp(n-k+1) / k! for n = 9 (Uspensky, 1937, p. 278).
Showing 1-7 of 7 results.