A381683 Triangle read by rows: T(n,k) = number of collections of up to k subsets of [n] covering [n], with [0]={}; n>=0, k=0..2^n.
1, 2, 0, 1, 2, 0, 1, 5, 9, 10, 0, 1, 14, 58, 125, 181, 209, 217, 218, 0, 1, 41, 401, 1947, 6091, 13987, 25395, 38261, 49701, 57709, 62077, 63897, 64457, 64577, 64593, 64594, 0, 1, 122, 2802, 30352, 210448, 1076880, 4385616, 14839576, 42831176, 107303376, 236306016, 462089756, 809460556, 1280895556, 1846618196, 2447698581
Offset: 0
Examples
Triangle begins: 1 2 0 1 2 0 1 5 9 10 0 1 14 58 125 181 209 217 218 0 1 41 401 1947 6091 13987 25395 38261 49701 57709 62077 63897 64457 64577 64593 64594 ... T(3,2)=14 is the number of covering collections of 1 or 2 subsets of [3]: {{1,2,3}} {{},{1,2,3}} {{1},{2,3}} {{1},{1,2,3}} {{2},{1,3}} {{2},{1,2,3}} {{3},{1,2}} {{3},{1,2,3}} {{1,2},{1,3}} {{1,2},{2,3}} {{1,3},{2,3}} {{1,2},{1,2,3}} {{1,3},{1,2,3}} {{2,3},{1,2,3}}.
Programs
-
Mathematica
Table[Sum[Sum[(-1)^(n-i)*Binomial[n, i]*Binomial[2^i, j], {i, 0, n}], {j, 0, k}], {n, 0, 4}, {k, 0, 2^n}]//Flatten
-
PARI
T(n,k) = sum(j=0,k, sum(i=0,n, (-1)^(n-i)*binomial(n,i)*binomial(2^i,j))); for(n=0,5,for(k=0,2^n,print1(T(n,k),", "))); \\ Joerg Arndt, Mar 04 2025
Formula
T(n,k) = Sum_{j=0..k} Sum_{i=0..n} (-1)^(n-i)*binomial(n,i)*binomial(2^i,j).
Comments