cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A381683 Triangle read by rows: T(n,k) = number of collections of up to k subsets of [n] covering [n], with [0]={}; n>=0, k=0..2^n.

Original entry on oeis.org

1, 2, 0, 1, 2, 0, 1, 5, 9, 10, 0, 1, 14, 58, 125, 181, 209, 217, 218, 0, 1, 41, 401, 1947, 6091, 13987, 25395, 38261, 49701, 57709, 62077, 63897, 64457, 64577, 64593, 64594, 0, 1, 122, 2802, 30352, 210448, 1076880, 4385616, 14839576, 42831176, 107303376, 236306016, 462089756, 809460556, 1280895556, 1846618196, 2447698581
Offset: 0

Views

Author

Manfred Boergens, Mar 04 2025

Keywords

Comments

Partial row sums of A163353.
For covers (collections without an empty set) see A369950.
For disjoint collections see A381682.
For disjoint covers see A102661.

Examples

			Triangle begins:
  1 2
  0 1  2
  0 1  5   9   10
  0 1 14  58  125  181   209   217   218
  0 1 41 401 1947 6091 13987 25395 38261 49701 57709 62077 63897 64457 64577 64593 64594
  ...
T(3,2)=14 is the number of covering collections of 1 or 2 subsets of [3]:
  {{1,2,3}}
  {{},{1,2,3}}
  {{1},{2,3}}
  {{1},{1,2,3}}
  {{2},{1,3}}
  {{2},{1,2,3}}
  {{3},{1,2}}
  {{3},{1,2,3}}
  {{1,2},{1,3}}
  {{1,2},{2,3}}
  {{1,3},{2,3}}
  {{1,2},{1,2,3}}
  {{1,3},{1,2,3}}
  {{2,3},{1,2,3}}.
		

Crossrefs

Cf. A000371 (diagonal).

Programs

  • Mathematica
    Table[Sum[Sum[(-1)^(n-i)*Binomial[n, i]*Binomial[2^i, j], {i, 0, n}], {j, 0, k}], {n, 0, 4}, {k, 0, 2^n}]//Flatten
  • PARI
    T(n,k) = sum(j=0,k, sum(i=0,n, (-1)^(n-i)*binomial(n,i)*binomial(2^i,j)));
    for(n=0,5,for(k=0,2^n,print1(T(n,k),", "))); \\ Joerg Arndt, Mar 04 2025

Formula

T(n,k) = Sum_{j=0..k} Sum_{i=0..n} (-1)^(n-i)*binomial(n,i)*binomial(2^i,j).