A000371
a(n) = Sum_{k=0..n} (-1)^(n-k)*binomial(n,k)*2^(2^k).
Original entry on oeis.org
2, 2, 10, 218, 64594, 4294642034, 18446744047940725978, 340282366920938463334247399005993378250, 115792089237316195423570985008687907850547725730273056332267095982282337798562
Offset: 0
Let n = 2, S = {a,b}, and P = {0,a,b,ab}. There are ten subsets of P whose union is S: {ab}, {a,b}, {a,ab}, {b,ab}, {a,b,ab}, and the empty set together with the same five. - _Marc LeBrun_, Nov 10 2010
- L. Comtet, Advanced Combinatorics, Reidel, 1974, p. 165.
- M. A. Harrison, Introduction to Switching and Automata Theory. McGraw Hill, NY, 1965, p. 170.
- S. Muroga, Threshold Logic and Its Applications. Wiley, NY, 1971, p. 38 and 214.
- N. J. A. Sloane, A Handbook of Integer Sequences, Academic Press, 1973 (includes this sequence).
- N. J. A. Sloane and Simon Plouffe, The Encyclopedia of Integer Sequences, Academic Press, 1995 (includes this sequence).
- C. G. Wagner, Covers of finite sets, Proc. 4th S-E Conf. Combin., Graph Theory, Computing, Congress. Numer. 8 (1973), 515-520.
- R. Baumann and H. Strass, On the number of bipolar Boolean functions, 2014, preprint.
- R. Baumann and H. Strass, On the number of bipolar Boolean functions, Journal of Logic and Computation, 27(8) (2017), 2431-2449.
- Thomas M. A. Fink, Regulatory motifs: structural and functional building blocks of genetic computation, arXiv:2208.14996 [q-bio.MN], 2022.
- Goto, Eiichi, and Hidetosi Takahasi, Some Theorems Useful in Threshold Logic for Enumerating Boolean Functions, in Proceedings International Federation for Information Processing (IFIP) Congress, 1962, pp. 747-752. [Annotated scans of certain pages]
- R. K. Guy, Letter to N. J. A. Sloane, Mar 1974
- T. Hearne and C. G. Wagner, Minimal covers of finite sets, Discr. Math. 5 (1973), 247-251.
- M. Klazar, Extremal problems for ordered hypergraphs, arXiv:math/0305048 [math.CO], 2003.
- A. J. Macula, Covers of a finite set, Math. Mag., 67 (1994), 141-144.
- S. Muroga, Threshold Logic and Its Applications, Wiley, NY, 1971 [Annotated scans of a few pages]
- N. J. A. Sloane, Transforms
- Eric Weisstein's World of Mathematics, Cover
- Index entries for sequences related to Boolean functions
-
[&+[(-1)^(n-k)*Binomial(n, k)*2^(2^k): k in [0..n]]: n in [0..10]]; // Vincenzo Librandi, Dec 28 2015
-
f:=n->add((-1)^(n-k)*binomial(n,k)*2^(2^k),k=0..n);
-
Table[Sum[(-1)^(n-k) Binomial[n,k]2^(2^k),{k,0,n}],{n,0,10}] (* Harvey P. Dale, Oct 17 2011 *)
-
a(n)=sum(k=0,n,(-1)^(n-k)*binomial(n,k)<<(2^k)) \\ Charles R Greathouse IV, Jan 02 2012
-
a(n) = sum(k=0, n, (-1)^k*n!/k!/(n-k)!*2^(2^(n-k))); \\ Altug Alkan, Dec 29 2015
Since this sequence arises in several different contexts, I replaced the old definition with an explicit formula. -
N. J. A. Sloane, Nov 23 2010
A102661
Triangle of partial sums of Stirling numbers of 2nd kind (A008277): T(n,k) = Sum_{i=1..k} Stirling2(n,i), 1<=k<=n.
Original entry on oeis.org
1, 1, 2, 1, 4, 5, 1, 8, 14, 15, 1, 16, 41, 51, 52, 1, 32, 122, 187, 202, 203, 1, 64, 365, 715, 855, 876, 877, 1, 128, 1094, 2795, 3845, 4111, 4139, 4140, 1, 256, 3281, 11051, 18002, 20648, 21110, 21146, 21147, 1, 512, 9842, 43947, 86472, 109299, 115179, 115929, 115974, 115975
Offset: 1
Triangle begins:
1;
1, 2;
1, 4, 5;
1, 8, 14, 15;
1, 16, 41, 51, 52;
...
- Richard Stanley, Enumerative Combinatorics, Cambridge Univ. Press, 1997 page 38. (#7 of the twelvefold ways)
- Reinhard Zumkeller, Rows n = 1..125 of triangle, flattened
- John R. Britnell and Mark Wildon, Bell numbers, partition moves and the eigenvalues of the random-to-top shuffle in Dynkin Types A, B and D, arXiv:1507.04803 [math.CO], 2015.
- T. S. Motzkin, Sorting numbers for cylinders and other classification numbers, in Combinatorics, Proc. Symp. Pure Math. 19, AMS, 1971, pp. 167-176. [Annotated, scanned copy]
- OEIS Wiki, Sorting numbers
-
a102661 n k = a102661_tabl !! (n-1) !! (k-1)
a102661_row n = a102661_tabl !! (n-1)
a102661_tabl = map (scanl1 (+) . tail) $ tail a048993_tabl
-- Reinhard Zumkeller, Jun 19 2015
-
with(combinat): A102661_row := proc(n) local k,j; seq(add(stirling2(n,j),j=1..k),k=1..n) end:
seq(print(A102661_row(r)),r=1..6); # Peter Luschny, Sep 30 2011
-
Table[Table[Sum[StirlingS2[n, i], {i, 1, k}], {k, 1, n}], {n, 1,10}] // Grid (* Geoffrey Critzer, Mar 22 2011*)
Table[Accumulate[StirlingS2[n,Range[n]]],{n,10}]//Flatten (* Harvey P. Dale, Oct 28 2019 *)
-
tabl(nn) = {for (n=1, nn, for (k=1, n, print1(sum(i=1, k, stirling(n,i, 2)), ", ");); print(););} \\ Michel Marcus, Aug 10 2015
-
def T(n,k):
return sum([stirling_number2(n,j) for j in range(1,k+1)])
# Danny Rorabaugh, Oct 13 2015
A163353
G.f.: A(x,y) = Sum_{n>=0,m>=0} (2^m-1)^n*x^n * log(1+y)^m/m!.
Original entry on oeis.org
1, 1, 0, 1, 1, 0, 1, 4, 4, 1, 0, 1, 13, 44, 67, 56, 28, 8, 1, 0, 1, 40, 360, 1546, 4144, 7896, 11408, 12866, 11440, 8008, 4368, 1820, 560, 120, 16, 1, 0, 1, 121, 2680, 27550, 180096, 866432, 3308736, 10453960, 27991600, 64472200, 129002640, 225783740, 347370800, 471435000, 565722640, 601080385, 565722720, 471435600, 347373600
Offset: 0
Triangle begins:
1,1;
0,1,1;
0,1,4,4,1;
0,1,13,44,67,56,28,8,1;
0,1,40,360,1546,4144,7896,11408,12866,11440,8008,4368,1820,560,120,16,1;
...
-
Table[Sum[(-1)^(n - j)*Binomial[n, j]*Binomial[2^j, k], {j, 0,
n}], {n, 0, 5}, {k, 0, 2^n}]//Flatten (* G. C. Greubel, Dec 19 2016 *)
-
T(n,k)=sum(j=0,n,(-1)^(n-j)*binomial(n,j)*binomial(2^j,k))
A369950
Triangle read by rows: T(n,k) = number of j-covers of [n] with j<=k, k=1..2^n-1.
Original entry on oeis.org
1, 1, 4, 5, 1, 13, 45, 80, 101, 108, 109, 1, 40, 361, 1586, 4505, 9482, 15913, 22348, 27353, 30356, 31721, 32176, 32281, 32296, 32297, 1, 121, 2681, 27671, 182777, 894103, 3491513, 11348063, 31483113, 75820263, 160485753, 301604003
Offset: 1
Triangle (with rows n >= 1 and columns k >= 1) begins as follows:
1;
1, 4, 5;
1, 13, 45, 80, 101, 108, 109;
1, 40, 361, 1586, 4505, 9482, 15913, 22348, 27353, 30356, 31721, 32176, 32281, 32296, 32297;
...
There are T(3,2) = 13 covers of [3] consisting of up to 2 subsets (brackets and commas omitted):
123
123 1
123 2
123 3
123 12
123 13
123 23
12 13
12 23
13 23
12 3
13 2
23 1
-
Flatten[Table[Sum[Sum[StirlingS1[i+1, j+1] (2^j-1)^n, {j, 0, i}]/i!, {i, k}], {n, 6}, {k, 2^n-1}]]
-
from math import comb
def A369950(n,k): return sum((-1)**j*comb(n, j)*comb(2**(n-j)-1, i) for j in range(n+1) for i in range(1,k+1)) # John Tyler Rascoe, Mar 06 2025
A381682
Triangle read by rows: T(n,k) = number of collections of up to k+1 disjoint subsets of [n] covering [n], with [0]={}, 0<=k<=n.
Original entry on oeis.org
1, 1, 2, 1, 3, 4, 1, 5, 9, 10, 1, 9, 22, 29, 30, 1, 17, 57, 92, 103, 104, 1, 33, 154, 309, 389, 405, 406, 1, 65, 429, 1080, 1570, 1731, 1753, 1754, 1, 129, 1222, 3889, 6640, 7956, 8250, 8279, 8280, 1, 257, 3537, 14332, 29053, 38650, 41758, 42256, 42293, 42294
Offset: 0
Triangle begins:
1
1 2
1 3 4
1 5 9 10
1 9 22 29 30
1 17 57 92 103 104
1 33 154 309 389 405 406
1 65 429 1080 1570 1731 1753 1754
1 129 1222 3889 6640 7956 8250 8279 8280
1 257 3537 14332 29053 38650 41758 42256 42293 42294
...
T(3,2)=9 is the number of disjoint [3]-covering collections of up to 3 subsets:
{{1,2,3}}
{{1,2,3},{}}
{{1},{2,3}}
{{2},{1,3}}
{{3},{1,2}}
{{1},{2},{3}}
{{1},{2,3},{}}
{{2},{1,3},{}}
{{3},{1,2},{}}.
-
Table[If[n==0, 1, 2*Sum[StirlingS2[n, j], {j, k}] + StirlingS2[n, k+1]], {n, 0, 9}, {k, 0, n}] // Flatten
Showing 1-5 of 5 results.
Comments