A003465
Number of ways to cover an n-set.
Original entry on oeis.org
1, 1, 5, 109, 32297, 2147321017, 9223372023970362989, 170141183460469231667123699502996689125, 57896044618658097711785492504343953925273862865136528166133547991141168899281
Offset: 0
Let n=2, S={a,b}, P={a,b,ab}. There are five subsets of P whose union is S: {ab}, {a,b}, {a,ab}, {b,ab}, {a,b,ab}. - _Marc LeBrun_, Nov 10 2010
- L. Comtet, Advanced Combinatorics, Reidel, 1974, p. 165.
- N. J. A. Sloane and Simon Plouffe, The Encyclopedia of Integer Sequences, Academic Press, 1995 (includes this sequence).
- C. G. Wagner, Covers of finite sets, Proc. 4th S-E Conf. Combin., Graph Theory, Computing, Congress. Numer. 8 (1973), 515-520.
- Alois P. Heinz, Table of n, a(n) for n = 0..11
- D. Applegate, M. LeBrun and N. J. A. Sloane, Dismal Arithmetic, J. Int. Seq. 14 (2011) # 11.9.8.
- T. Hearne and C. G. Wagner, Minimal covers of finite sets, Discr. Math. 5 (1973), 247-251.
- Martin Klazar, Extremal problems for ordered hypergraphs, arXiv:math/0305048 [math.CO], 2003.
- Liwen Ma, Classification of coverings in the finite approximation spaces, Inf. Sci. 276 (2014) 31-41
- A. J. Macula, Covers of a finite set, Math. Mag., 67 (1994), 141-144.
- S. Spasovski and A. M. Bogdanova, Optimization of the Polynomial Greedy Solution for the Set Covering Problem, 2013, 10th Conference for Informatics and Information Technology (CIIT 2013).
- Eric Weisstein's World of Mathematics, Cover.
- Yoad Winter and Remko Scha, Plurals, draft chapter for the Wiley-Blackwell Handbook of Contemporary Semantics - second edition, edited by Shalom Lappin and Chris Fox, 2014.
- Ping Zhou, Covering rough sets based on neighborhoods: an approach without using neighborhoods, Int. J. Approx. Reas. 52 (2011) 461-472, Section 3
-
a:= n-> add((-1)^k * binomial(n, k)*2^(2^(n-k))/2, k=0..n):
seq(a(n), n=0..11); # Alois P. Heinz, Aug 24 2014
-
Table[Sum[(-1)^j Binomial[n,j] 2^(2^(n-j)-1),{j,0,n}],{n,0,10}] (* Geoffrey Critzer, Jun 26 2013 *)
-
{a(n) = sum(k=0, n, (-1)^k * n!/k!/(n-k)! * 2^(2^(n-k))) / 2} /* Michael Somos, Jun 14 1999 */
A055154
Triangle read by rows: T(n,k) = number of k-covers of a labeled n-set, k=1..2^n-1.
Original entry on oeis.org
1, 1, 3, 1, 1, 12, 32, 35, 21, 7, 1, 1, 39, 321, 1225, 2919, 4977, 6431, 6435, 5005, 3003, 1365, 455, 105, 15, 1, 1, 120, 2560, 24990, 155106, 711326, 2597410, 7856550, 20135050, 44337150, 84665490, 141118250, 206252550, 265182450, 300540190
Offset: 1
Triangle begins:
[1],
[1,3,1],
[1,12,32,35,21,7,1],
...
There are 35 4-covers of a labeled 3-set.
- L. Comtet, Advanced Combinatorics, Reidel, 1974, p. 165.
-
nn=5;Map[Select[#,#>0&]&,Transpose[Table[Table[Sum[(-1)^j Binomial[n,j] Binomial[2^(n-j)-1,m],{j,0,n}],{n,1,nn}],{m,1,2^nn-1}]]]//Grid (* Geoffrey Critzer, Jun 27 2013 *)
A102661
Triangle of partial sums of Stirling numbers of 2nd kind (A008277): T(n,k) = Sum_{i=1..k} Stirling2(n,i), 1<=k<=n.
Original entry on oeis.org
1, 1, 2, 1, 4, 5, 1, 8, 14, 15, 1, 16, 41, 51, 52, 1, 32, 122, 187, 202, 203, 1, 64, 365, 715, 855, 876, 877, 1, 128, 1094, 2795, 3845, 4111, 4139, 4140, 1, 256, 3281, 11051, 18002, 20648, 21110, 21146, 21147, 1, 512, 9842, 43947, 86472, 109299, 115179, 115929, 115974, 115975
Offset: 1
Triangle begins:
1;
1, 2;
1, 4, 5;
1, 8, 14, 15;
1, 16, 41, 51, 52;
...
- Richard Stanley, Enumerative Combinatorics, Cambridge Univ. Press, 1997 page 38. (#7 of the twelvefold ways)
- Reinhard Zumkeller, Rows n = 1..125 of triangle, flattened
- John R. Britnell and Mark Wildon, Bell numbers, partition moves and the eigenvalues of the random-to-top shuffle in Dynkin Types A, B and D, arXiv:1507.04803 [math.CO], 2015.
- T. S. Motzkin, Sorting numbers for cylinders and other classification numbers, in Combinatorics, Proc. Symp. Pure Math. 19, AMS, 1971, pp. 167-176. [Annotated, scanned copy]
- OEIS Wiki, Sorting numbers
-
a102661 n k = a102661_tabl !! (n-1) !! (k-1)
a102661_row n = a102661_tabl !! (n-1)
a102661_tabl = map (scanl1 (+) . tail) $ tail a048993_tabl
-- Reinhard Zumkeller, Jun 19 2015
-
with(combinat): A102661_row := proc(n) local k,j; seq(add(stirling2(n,j),j=1..k),k=1..n) end:
seq(print(A102661_row(r)),r=1..6); # Peter Luschny, Sep 30 2011
-
Table[Table[Sum[StirlingS2[n, i], {i, 1, k}], {k, 1, n}], {n, 1,10}] // Grid (* Geoffrey Critzer, Mar 22 2011*)
Table[Accumulate[StirlingS2[n,Range[n]]],{n,10}]//Flatten (* Harvey P. Dale, Oct 28 2019 *)
-
tabl(nn) = {for (n=1, nn, for (k=1, n, print1(sum(i=1, k, stirling(n,i, 2)), ", ");); print(););} \\ Michel Marcus, Aug 10 2015
-
def T(n,k):
return sum([stirling_number2(n,j) for j in range(1,k+1)])
# Danny Rorabaugh, Oct 13 2015
A381682
Triangle read by rows: T(n,k) = number of collections of up to k+1 disjoint subsets of [n] covering [n], with [0]={}, 0<=k<=n.
Original entry on oeis.org
1, 1, 2, 1, 3, 4, 1, 5, 9, 10, 1, 9, 22, 29, 30, 1, 17, 57, 92, 103, 104, 1, 33, 154, 309, 389, 405, 406, 1, 65, 429, 1080, 1570, 1731, 1753, 1754, 1, 129, 1222, 3889, 6640, 7956, 8250, 8279, 8280, 1, 257, 3537, 14332, 29053, 38650, 41758, 42256, 42293, 42294
Offset: 0
Triangle begins:
1
1 2
1 3 4
1 5 9 10
1 9 22 29 30
1 17 57 92 103 104
1 33 154 309 389 405 406
1 65 429 1080 1570 1731 1753 1754
1 129 1222 3889 6640 7956 8250 8279 8280
1 257 3537 14332 29053 38650 41758 42256 42293 42294
...
T(3,2)=9 is the number of disjoint [3]-covering collections of up to 3 subsets:
{{1,2,3}}
{{1,2,3},{}}
{{1},{2,3}}
{{2},{1,3}}
{{3},{1,2}}
{{1},{2},{3}}
{{1},{2,3},{}}
{{2},{1,3},{}}
{{3},{1,2},{}}.
-
Table[If[n==0, 1, 2*Sum[StirlingS2[n, j], {j, k}] + StirlingS2[n, k+1]], {n, 0, 9}, {k, 0, n}] // Flatten
A381683
Triangle read by rows: T(n,k) = number of collections of up to k subsets of [n] covering [n], with [0]={}; n>=0, k=0..2^n.
Original entry on oeis.org
1, 2, 0, 1, 2, 0, 1, 5, 9, 10, 0, 1, 14, 58, 125, 181, 209, 217, 218, 0, 1, 41, 401, 1947, 6091, 13987, 25395, 38261, 49701, 57709, 62077, 63897, 64457, 64577, 64593, 64594, 0, 1, 122, 2802, 30352, 210448, 1076880, 4385616, 14839576, 42831176, 107303376, 236306016, 462089756, 809460556, 1280895556, 1846618196, 2447698581
Offset: 0
Triangle begins:
1 2
0 1 2
0 1 5 9 10
0 1 14 58 125 181 209 217 218
0 1 41 401 1947 6091 13987 25395 38261 49701 57709 62077 63897 64457 64577 64593 64594
...
T(3,2)=14 is the number of covering collections of 1 or 2 subsets of [3]:
{{1,2,3}}
{{},{1,2,3}}
{{1},{2,3}}
{{1},{1,2,3}}
{{2},{1,3}}
{{2},{1,2,3}}
{{3},{1,2}}
{{3},{1,2,3}}
{{1,2},{1,3}}
{{1,2},{2,3}}
{{1,3},{2,3}}
{{1,2},{1,2,3}}
{{1,3},{1,2,3}}
{{2,3},{1,2,3}}.
-
Table[Sum[Sum[(-1)^(n-i)*Binomial[n, i]*Binomial[2^i, j], {i, 0, n}], {j, 0, k}], {n, 0, 4}, {k, 0, 2^n}]//Flatten
-
T(n,k) = sum(j=0,k, sum(i=0,n, (-1)^(n-i)*binomial(n,i)*binomial(2^i,j)));
for(n=0,5,for(k=0,2^n,print1(T(n,k),", "))); \\ Joerg Arndt, Mar 04 2025
Showing 1-5 of 5 results.
Comments