cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-2 of 2 results.

A381908 Expansion of (1/x) * Series_Reversion( x / ((1+x) * B(x)) ), where B(x) is the g.f. of A002293.

Original entry on oeis.org

1, 2, 9, 64, 556, 5351, 54818, 585941, 6459430, 72902748, 838174008, 9781930978, 115579403512, 1379879992445, 16620303073607, 201717610488447, 2464502123154530, 30286289207099652, 374115157763376043, 4642636869759251879, 57852132860181652189, 723592983110972398779
Offset: 0

Views

Author

Seiichi Manyama, Mar 10 2025

Keywords

Crossrefs

Programs

  • PARI
    a(n) = sum(k=0, n, binomial(n+4*k+1, k)*binomial(n+1, n-k)/(n+4*k+1));

Formula

G.f. A(x) satisfies A(x) = (1 + x*A(x)) * B(x*A(x)).
a(n) = Sum_{k=0..n} binomial(n+4*k+1,k) * binomial(n+1,n-k)/(n+4*k+1).
a(n) = hypergeom([(1+n)/4, (2+n)/4, (3+n)/4, (4+n)/4, -n], [2, (2+n)/3, (3+n)/3, (4+n)/3], -2^8/3^3). - Stefano Spezia, Mar 10 2025

A381910 Expansion of (1/x) * Series_Reversion( x / ((1+x)^3 * B(x)) ), where B(x) is the g.f. of A002293.

Original entry on oeis.org

1, 4, 26, 222, 2243, 25243, 305217, 3878731, 51097713, 691596081, 9558970897, 134347855874, 1914131985782, 27582542400252, 401284140631911, 5886072268606617, 86951528919335670, 1292467847124221832, 19316795168721092789, 290107272994659617741, 4375905051887803660504
Offset: 0

Views

Author

Seiichi Manyama, Mar 10 2025

Keywords

Crossrefs

Programs

  • PARI
    a(n) = sum(k=0, n, binomial(n+4*k+1, k)*binomial(3*n+3, n-k)/(n+4*k+1));

Formula

G.f. A(x) satisfies A(x) = (1 + x*A(x))^3 * B(x*A(x)).
a(n) = Sum_{k=0..n} binomial(n+4*k+1,k) * binomial(3*n+3,n-k)/(n+4*k+1).
a(n) = binomial(3*(1 + n), n)*hypergeom([(1+n)/4, (2+n)/4, (3+n)/4, (4+n)/4, -n], [(2+n)/3, (3+n)/3, (4+n)/3, 4+2*n], -2^8/3^3)/(1 + n). - Stefano Spezia, Mar 10 2025
Showing 1-2 of 2 results.