A381908 Expansion of (1/x) * Series_Reversion( x / ((1+x) * B(x)) ), where B(x) is the g.f. of A002293.
1, 2, 9, 64, 556, 5351, 54818, 585941, 6459430, 72902748, 838174008, 9781930978, 115579403512, 1379879992445, 16620303073607, 201717610488447, 2464502123154530, 30286289207099652, 374115157763376043, 4642636869759251879, 57852132860181652189, 723592983110972398779
Offset: 0
Keywords
Programs
-
PARI
a(n) = sum(k=0, n, binomial(n+4*k+1, k)*binomial(n+1, n-k)/(n+4*k+1));
Formula
G.f. A(x) satisfies A(x) = (1 + x*A(x)) * B(x*A(x)).
a(n) = Sum_{k=0..n} binomial(n+4*k+1,k) * binomial(n+1,n-k)/(n+4*k+1).
a(n) = hypergeom([(1+n)/4, (2+n)/4, (3+n)/4, (4+n)/4, -n], [2, (2+n)/3, (3+n)/3, (4+n)/3], -2^8/3^3). - Stefano Spezia, Mar 10 2025