A381958 Numerator of the sum of the reciprocals of the indices of distinct prime factors of n.
0, 1, 1, 1, 1, 3, 1, 1, 1, 4, 1, 3, 1, 5, 5, 1, 1, 3, 1, 4, 3, 6, 1, 3, 1, 7, 1, 5, 1, 11, 1, 1, 7, 8, 7, 3, 1, 9, 2, 4, 1, 7, 1, 6, 5, 10, 1, 3, 1, 4, 9, 7, 1, 3, 8, 5, 5, 11, 1, 11, 1, 12, 3, 1, 1, 17, 1, 8, 11, 19, 1, 3, 1, 13, 5, 9, 9, 5, 1, 4, 1, 14, 1, 7, 10, 15, 3, 6, 1, 11, 5, 10, 13, 16, 11
Offset: 1
Examples
0, 1, 1/2, 1, 1/3, 3/2, 1/4, 1, 1/2, 4/3, 1/5, 3/2, 1/6, 5/4, 5/6, 1, 1/7, 3/2, 1/8, 4/3, ...
Crossrefs
Programs
-
Mathematica
Join[{0}, Table[Plus @@ (1/PrimePi[#[[1]]] & /@ FactorInteger[n]), {n, 2, 95}] // Numerator] nmax = 95; CoefficientList[Series[Sum[x^Prime[k]/(k (1 - x^Prime[k])), {k, 1, nmax}], {x, 0, nmax}], x] // Numerator // Rest
-
PARI
a(n) = my(f=factor(n)); numerator(sum(k=1, #f~, 1/primepi(f[k,1]))); \\ Michel Marcus, Mar 11 2025
Formula
If n = Product (p_j^k_j) then a(n) = numerator of Sum (1/pi(p_j)).
G.f. for fractions: Sum_{k>=1} x^prime(k) / (k*(1 - x^prime(k))).