A382343 Triangle read by rows: T(n, k) is the number of partitions of n into k parts where 0 <= k <= n, and each part is one of 3 kinds.
1, 0, 3, 0, 3, 6, 0, 3, 9, 10, 0, 3, 15, 18, 15, 0, 3, 18, 36, 30, 21, 0, 3, 24, 55, 66, 45, 28, 0, 3, 27, 81, 114, 105, 63, 36, 0, 3, 33, 108, 189, 195, 153, 84, 45, 0, 3, 36, 145, 276, 348, 298, 210, 108, 55, 0, 3, 42, 180, 405, 552, 558, 423, 276, 135, 66
Offset: 0
Examples
Triangle starts: 0 : [1] 1 : [0, 3] 2 : [0, 3, 6] 3 : [0, 3, 9, 10] 4 : [0, 3, 15, 18, 15] 5 : [0, 3, 18, 36, 30, 21] 6 : [0, 3, 24, 55, 66, 45, 28] 7 : [0, 3, 27, 81, 114, 105, 63, 36] 8 : [0, 3, 33, 108, 189, 195, 153, 84, 45] 9 : [0, 3, 36, 145, 276, 348, 298, 210, 108, 55] 10 : [0, 3, 42, 180, 405, 552, 558, 423, 276, 135, 66] ...
Crossrefs
Programs
-
Maple
b:= proc(n, i) option remember; expand(`if`(n=0, 1, `if`(i<1, 0, add(x^j*b(n-i*j, min(n-i*j, i-1))*(j+2)*(j+1)/2, j=0..n/i)))) end: T:= (n, k)-> coeff(b(n$2), x, k): seq(seq(T(n, k), k=0..n), n=0..10); # Alois P. Heinz, Mar 27 2025
-
Mathematica
b[n_, i_] := b[n, i] = Expand[If[n == 0, 1, If[i < 1, 0, Sum[x^j*b[n-i*j, Min[n-i*j, i-1]]*(j+2)*(j+1)/2, {j, 0, n/i}]]]]; T[n_, k_] := Coefficient[b[n, n], x, k]; Table[Table[T[n, k], {k, 0, n}], {n, 0, 10}] // Flatten (* Jean-François Alcover, Jul 30 2025, after Alois P. Heinz *)
-
Python
from sympy import binomial from sympy.utilities.iterables import partitions kinds = 3 - 1 # the number of part kinds - 1 def t_row( n): if n == 0 : return [1] t = list( [0] * n) for p in partitions( n): fact = 1 s = 0 for k in p : s += p[k] fact *= binomial( kinds + p[k], kinds) if s > 0 : t[s - 1] += fact return [0] + t
Formula
T(n,n) = binomial(n + 2, 2) = A000217(n + 1).
T(n,1) = 3 for n >= 1.
Sum_{k=0..n} (-1)^k * T(n,k) = A022598(n). - Alois P. Heinz, Mar 27 2025