A382345 Square array A(n,k), n>=0, k>=0, read by antidiagonals downwards, where n unlabeled objects are distributed into k containers of two kinds. Containers may be left empty.
1, 2, 0, 3, 2, 0, 4, 4, 2, 0, 5, 6, 7, 2, 0, 6, 8, 12, 8, 2, 0, 7, 10, 17, 18, 11, 2, 0, 8, 12, 22, 28, 26, 12, 2, 0, 9, 14, 27, 38, 46, 34, 15, 2, 0, 10, 16, 32, 48, 66, 64, 46, 16, 2, 0, 11, 18, 37, 58, 86, 100, 94, 56, 19, 2, 0, 12, 20, 42, 68, 106, 136, 152, 124, 70, 20, 2, 0
Offset: 0
Examples
Array starts: 0 : [1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11] 1 : [0, 2, 4, 6, 8, 10, 12, 14, 16, 18, 20] 2 : [0, 2, 7, 12, 17, 22, 27, 32, 37, 42, 47] 3 : [0, 2, 8, 18, 28, 38, 48, 58, 68, 78, 88] 4 : [0, 2, 11, 26, 46, 66, 86, 106, 126, 146, 166] 5 : [0, 2, 12, 34, 64, 100, 136, 172, 208, 244, 280] 6 : [0, 2, 15, 46, 94, 152, 217, 282, 347, 412, 477] 7 : [0, 2, 16, 56, 124, 214, 316, 426, 536, 646, 756] 8 : [0, 2, 19, 70, 167, 302, 464, 640, 825, 1010, 1195] 9 : [0, 2, 20, 84, 212, 406, 648, 922, 1212, 1512, 1812] 10 : [0, 2, 23, 100, 271, 542, 899, 1314, 1766, 2236, 2717] ...
Links
- Alois P. Heinz, Antidiagonals n = 0..200, flattened
Crossrefs
Programs
-
Maple
b:= proc(n, i) option remember; expand(`if`(n=0, 1, `if`(i<1, 0, add(x^j*b(n-i*j, min(n-i*j, i-1))*(j+1), j=0..n/i)))) end: A:= (n, k)-> coeff(b(n+k$2), x, k): seq(seq(A(n, d-n), n=0..d), d=0..11); # Alois P. Heinz, Mar 29 2025
-
Mathematica
b[n_, i_] := b[n, i] = Expand[If[n == 0, 1, If[i < 1, 0, Sum[x^j*b[n - i*j, Min[n - i*j, i - 1]]*(j + 1), {j, 0, n/i}]]]]; A[n_, k_] := Coefficient[b[n + k, n + k], x, k]; Table[Table[A[n, d - n], {n, 0, d}], {d, 0, 11}] // Flatten (* Jean-François Alcover, Apr 07 2025, after Alois P. Heinz *)
-
Python
from sympy.utilities.iterables import partitions def a_row(n, length=11) -> list[int]: if n == 0 : return list(range(1, length + 1)) t = [0] * length for p in partitions(n): fact = 1 s = 0 for k in p : s += p[k] fact *= p[k] + 1 if s > 0 : t[s] += fact for i in range(1, length - 1): t[i+1] += t[i] * 2 - t[i-1] return t for n in range(11): print(a_row(n))
Formula
A(0,k) = k + 1.
A(1,k) = 2*k.
A(2,k+1) = 2 + 5 * k.
A(n,1) = 2.
A(n,k) = Sum_{i=0..k} (k + 1 - i) * A382342(n,i) for k <= n.
A(n,n+k) = A(n,n) + k * A000712(n).
A(n,k) = A382342(n,k) + 2 * A(n,k-1) - A(n,k-2) for 2 <= k <= n.
A(n,k) = A382342(n+k,k). - Alois P. Heinz, Mar 31 2025