cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-5 of 5 results.

A382372 Expansion of 1/( 1 - Sum_{k>=0} x^(4^k) / (1 - x^(4^k)) ).

Original entry on oeis.org

1, 1, 2, 4, 9, 18, 37, 76, 158, 325, 670, 1381, 2850, 5876, 12117, 24986, 51530, 106262, 219131, 451885, 931876, 1921695, 3962884, 8172182, 16852538, 34752996, 71667001, 147790386, 304770689, 628492615, 1296066140, 2672724207, 5511643710, 11366012289
Offset: 0

Views

Author

Seiichi Manyama, Mar 23 2025

Keywords

Crossrefs

Formula

a(0) = 1; a(n) = Sum_{k=1..n} A115362(k-1) * a(n-k).
G.f.: 1/(1 - Sum_{i>=1, j>=0} x^(i*4^j)).
G.f. A(x) satisfies A(x) = 1/( 1/A(x^4) - x/(1-x) ).

A382373 Expansion of 1/( 1 - Sum_{k>=0} x^(5^k) / (1 - x^(5^k)) ).

Original entry on oeis.org

1, 1, 2, 4, 8, 17, 34, 69, 140, 284, 578, 1173, 2382, 4837, 9822, 19948, 40508, 82261, 167050, 339233, 688896, 1398964, 2840926, 5769169, 11715654, 23791402, 48314044, 98113049, 199241660, 404607125, 821650100, 1668554099, 3388392198, 6880928638, 13973346686
Offset: 0

Views

Author

Seiichi Manyama, Mar 23 2025

Keywords

Crossrefs

Formula

a(0) = 1; a(n) = Sum_{k=1..n} A055457(k) * a(n-k).
G.f.: 1/(1 - Sum_{i>=1, j>=0} x^(i*5^j)).
G.f. A(x) satisfies A(x) = 1/( 1/A(x^5) - x/(1-x) ).

A382378 Expansion of 1/( 1 - Sum_{k>=0} x^(6^k) / (1 - x^(6^k)) ).

Original entry on oeis.org

1, 1, 2, 4, 8, 16, 33, 66, 133, 268, 540, 1088, 2194, 4421, 8910, 17957, 36190, 72936, 146996, 296252, 597061, 1203306, 2425121, 4887544, 9850272, 19852060, 40009486, 80634401, 162509126, 327517977, 660073866, 1330301036, 2681064864, 5403370072, 10889855193, 21947218962
Offset: 0

Views

Author

Seiichi Manyama, Mar 23 2025

Keywords

Crossrefs

Formula

a(0) = 1; a(n) = Sum_{k=1..n} A373216(k) * a(n-k).
G.f.: 1/(1 - Sum_{i>=1, j>=0} x^(i*6^j)).
G.f. A(x) satisfies A(x) = 1/( 1/A(x^6) - x/(1-x) ).

A382368 Expansion of 1/( 1 - 4 * Sum_{k>=0} x^(3^k) / (1 - x^(3^k)) )^(1/2).

Original entry on oeis.org

1, 2, 8, 36, 162, 750, 3536, 16858, 81100, 392914, 1914268, 9369190, 46032396, 226898158, 1121510176, 5556731592, 27589816042, 137240945530, 683808343416, 3412128301538, 17048743841882, 85286538527304, 427112389604968, 2141096012912290, 10743017708448232
Offset: 0

Views

Author

Seiichi Manyama, Mar 22 2025

Keywords

Crossrefs

Formula

G.f. A(x) satisfies A(x) = 1/( 1/A(x^3)^2 - 4*x/(1-x) )^(1/2).

A382369 Expansion of 1/( 1 - 9 * Sum_{k>=0} x^(3^k) / (1 - x^(3^k)) )^(1/3).

Original entry on oeis.org

1, 3, 21, 168, 1416, 12396, 111219, 1015221, 9386643, 87650775, 824926152, 7813623234, 74403686022, 711670543635, 6833183666862, 65826593737206, 635962416394296, 6159757277793783, 59796182640515031, 581643107427461664, 5667929195670139296, 55322424966010598556
Offset: 0

Views

Author

Seiichi Manyama, Mar 22 2025

Keywords

Crossrefs

Formula

G.f. A(x) satisfies A(x) = 1/( 1/A(x^3)^3 - 9*x/(1-x) )^(1/3).
Showing 1-5 of 5 results.