cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A382431 Number of minimum dominating sets in the n-Goldberg graph.

Original entry on oeis.org

63, 12, 5, 1395, 504, 204, 27, 5, 7370, 1728, 390, 42, 5, 21052, 3825, 621, 57, 5, 46011, 6930, 897, 72, 5, 86216, 11178, 1218, 87, 5, 146041, 16704, 1584, 102, 5, 230265, 23643, 1995, 117, 5, 344072, 32130, 2451, 132, 5, 493051, 42300, 2952, 147, 5, 683196, 54288, 3498, 162, 5
Offset: 3

Views

Author

Eric W. Weisstein, Mar 25 2025

Keywords

Comments

The domination number is given by A364668(n). - Andrew Howroyd, May 24 2025

Crossrefs

Cf. A364668 (domination number), A382384, A382657.

Programs

  • Mathematica
    Table[Piecewise[{{1395, n == 6}, {5, Mod[n, 5] == 0}, {3 n, Mod[n, 5] == 4}, {3 n (3 n + 61)/10, Mod[n, 5] == 3}, {9 n (n^2 + 61 n - 76)/50, Mod[n, 5] == 2}, {n (27 n^3 + 3294 n^2 + 25281 n - 42602)/1000, Mod[n, 5] == 1}}], {n, 3, 50}] (* Eric W. Weisstein, May 31 2025 *)
    Join[{63, 12, 5, 1395}, LinearRecurrence[{0, 0, 0, 0, 5, 0, 0, 0, 0, -10, 0, 0, 0, 0, 10, 0, 0, 0, 0, -5, 0, 0, 0, 0, 1}, {504, 204, 27, 5, 7370, 1728, 390, 42, 5, 21052, 3825, 621, 57, 5, 46011, 6930, 897, 72, 5, 86216, 11178, 1218, 87, 5, 146041}, 50]] (* Eric W. Weisstein, May 31 2025 *)
    CoefficientList[Series[-(1/((-1 + x)^5 (1 + x + x^2 + x^3 + x^4)^5)) (63 + 12 x + 5 x^2 + 1395 x^3 + 504 x^4 - 111 x^5 - 33 x^6 - 20 x^7 + 395 x^8 - 792 x^9 + 27 x^11 + 30 x^12 - 1848 x^13 + 225 x^14 + 81 x^15 - 3 x^16 - 20 x^17 + 501 x^18 + 45 x^19 - 33 x^20 - 3 x^21 + 5 x^22 - 44 x^23 + 18 x^24 + 6 x^28), {x, 0, 50}], x] (* Eric W. Weisstein, May 31 2025 *)
  • PARI
    a(n)=my(m=n\5+1,r=-n%5); if(r<=2, if(r==0, 5, 3*n*if(r==1, 1, (3*m+11)/2)), if(n==6, 1395, n*if(r==3, 9*(m^2 + 11*m - 10)/2, (27*m^3 + 594*m^2 + 9*m - 742)/8) )) \\ Andrew Howroyd, May 24 2025

Formula

a(5*n) = 5.
a(5*n-1) = 3*(5*n-1); a(5*n-2) = 3*(5*n-2)*(3*n+11)/2; a(5*n-3) = 9*(5*n-3)*(n^2 + 11*n - 10)/2; a(5*n-4) = (5*n-4)*(27*n^3 + 594*n^2 + 9*n - 742)/8 for n > 2. - Andrew Howroyd, May 24 2025

Extensions

a(11)-a(15) from Eric W. Weisstein, May 12 2025
a(16) onwards from Andrew Howroyd, May 24 2025