A382443 a(n) = Sum_{k=0..n} binomial(n,k) * ( binomial(n,k) - binomial(n,k-1) )^4.
1, 1, 4, 65, 566, 10912, 164032, 3237313, 62253130, 1314421886, 28392213224, 639799858304, 14785604868256, 350615631856960, 8485316740880384, 209179475361783233, 5239271305444731698, 133100429387161703962, 3424142506153260211720, 89090362800169426107070
Offset: 0
Keywords
Links
- Vincenzo Librandi, Table of n, a(n) for n = 0..500
Programs
-
Magma
[&+[Binomial(n, k)* (Binomial(n, k) - Binomial (n, k-1))^4: k in [0..n]]: n in [0..21]]; // Vincenzo Librandi, Mar 29 2025
-
Mathematica
Table[Sum[Binomial[n,k]*(Binomial[n,k]-Binomial[n,k-1])^4,{k,0,n}],{n,0,20}] (* Vincenzo Librandi, Mar 29 2025 *)
-
PARI
a(n) = sum(k=0, n, binomial(n, k)*(binomial(n, k)-binomial(n, k-1))^4);
Formula
a(n) = Sum_{k=0..n} binomial(n,k)^2 * ( binomial(n,k) - binomial(n,k-1) )^3.
a(n) ~ 3 * 2^(5*n+6) / (Pi^2 * 5^(5/2) * n^4). - Vaclav Kotesovec, Mar 26 2025