cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A382472 a(n) = Sum_{k=0..n} binomial(k+5,5) * binomial(2*k,2*n-2*k).

Original entry on oeis.org

1, 6, 27, 182, 987, 4620, 20678, 87732, 355095, 1387462, 5258967, 19416222, 70086803, 248046540, 862694058, 2954279732, 9977518122, 33278815920, 109749059308, 358231786128, 1158357919194, 3713416860580, 11810098024410, 37285901203740, 116917784689237
Offset: 0

Views

Author

Seiichi Manyama, Mar 28 2025

Keywords

Crossrefs

Programs

  • Magma
    [&+[Binomial(k+5, 5) * Binomial(2*k, 2*n-2*k): k in [0..n]]: n in [0..25]]; // Vincenzo Librandi, Apr 11 2025
  • Mathematica
    Table[Sum[Binomial[k+5,5]*Binomial[2*k,2*n-2*k],{k,0,n}],{n,0,30}] (* Vincenzo Librandi, Apr 11 2025 *)
  • PARI
    a(n) = sum(k=0, n, binomial(k+5, 5)*binomial(2*k, 2*n-2*k));
    
  • PARI
    my(N=5, M=30, x='x+O('x^M), X=1-x-x^2, Y=3); Vec(sum(k=0, (N+1)\2, 4^k*binomial(N+1, 2*k)*X^(N+1-2*k)*x^(Y*k))/(X^2-4*x^Y)^(N+1))
    

Formula

G.f.: (Sum_{k=0..3} 4^k * binomial(6,2*k) * (1-x-x^2)^(6-2*k) * x^(3*k)) / ((1-x-x^2)^2 - 4*x^3)^6.