A108479
Antidiagonal sums of number triangle A086645.
Original entry on oeis.org
1, 1, 2, 7, 17, 44, 117, 305, 798, 2091, 5473, 14328, 37513, 98209, 257114, 673135, 1762289, 4613732, 12078909, 31622993, 82790070, 216747219, 567451585, 1485607536, 3889371025, 10182505537, 26658145586, 69791931223, 182717648081
Offset: 0
-
LinearRecurrence[{2,1,2,-1},{1,1,2,7},30] (* Harvey P. Dale, Jun 01 2021 *)
A381421
a(n) = Sum_{k=0..n} (k+1) * binomial(2*k,2*n-2*k).
Original entry on oeis.org
1, 2, 5, 22, 68, 206, 631, 1870, 5467, 15836, 45416, 129260, 365565, 1028122, 2877697, 8021010, 22274476, 61653850, 170152275, 468347046, 1286055927, 3523777912, 9635982160, 26302324504, 71674754873, 195015074610, 529846108989, 1437657038030, 3896050721940
Offset: 0
- Vincenzo Librandi, Table of n, a(n) for n = 0..500
- Index entries for linear recurrences with constant coefficients, signature (4,-2,0,-11,0,-2,4,-1).
-
[&+[(k+1) * Binomial(2*k, 2*n-2*k): k in [0..n]]: n in [0..29]]; // Vincenzo Librandi, Apr 23 2025
-
Table[Sum[(k+1)*Binomial[2*k,2*n-2*k],{k,0,n}],{n,0,30}] (* Vincenzo Librandi, Apr 23 2025 *)
-
a(n) = sum(k=0, n, (k+1)*binomial(2*k, 2*n-2*k));
-
my(N=1, M=30, x='x+O('x^M), X=1-x-x^2, Y=3); Vec(sum(k=0, (N+1)\2, 4^k*binomial(N+1, 2*k)*X^(N+1-2*k)*x^(Y*k))/(X^2-4*x^Y)^(N+1))
A382230
a(n) = Sum_{k=0..n} binomial(k+2,2) * binomial(2*k,2*n-2*k).
Original entry on oeis.org
1, 3, 9, 46, 171, 591, 2033, 6714, 21606, 68308, 212370, 651234, 1974113, 5924277, 17623671, 52025858, 152539077, 444530073, 1288396257, 3715833732, 10668907932, 30507914696, 86912853588, 246755125332, 698353551105, 1970673504951, 5545952371509, 15568330002486
Offset: 0
- Vincenzo Librandi, Table of n, a(n) for n = 0..500
- Index entries for linear recurrences with constant coefficients, signature (6,-9,2,-18,30,7,30,-18,2,-9,6,-1).
-
[&+[Binomial(k+2, 2) * Binomial(2*k, 2*n-2*k): k in [0..n]]: n in [0..29]]; // Vincenzo Librandi, Apr 22 2025
-
Table[Sum[Binomial[k+2,2]*Binomial[2*k,2*n-2*k],{k,0,n}],{n,0,30}] (* Vincenzo Librandi, Apr 22 2025 *)
-
a(n) = sum(k=0, n, binomial(k+2, 2)*binomial(2*k, 2*n-2*k));
-
my(N=2, M=30, x='x+O('x^M), X=1-x-x^2, Y=3); Vec(sum(k=0, (N+1)\2, 4^k*binomial(N+1, 2*k)*X^(N+1-2*k)*x^(Y*k))/(X^2-4*x^Y)^(N+1))
A382470
a(n) = Sum_{k=0..n} binomial(k+3,3) * binomial(2*k,2*n-2*k).
Original entry on oeis.org
1, 4, 14, 80, 345, 1336, 5074, 18404, 64460, 220276, 736242, 2415128, 7798043, 24833160, 78131242, 243211412, 749926963, 2292771088, 6956262660, 20959406680, 62753991192, 186809711448, 553172044548, 1630068765840, 4781871397429, 13969460520764
Offset: 0
- Vincenzo Librandi, Table of n, a(n) for n = 0..400
- Index entries for linear recurrences with constant coefficients, signature (8,-20,16,-26,88,-48,24,-163,24,-48,88,-26,16,-20,8,-1).
-
[&+[Binomial(k+3,3) * Binomial(2*k,2*n-2*k): k in [0..n]]: n in [0..25]]; // Vincenzo Librandi, Apr 10 2025
-
Table[Sum[Binomial[k+3,3]*Binomial[2*k,2*n-2*k],{k,0,n}],{n,0,30}] (* Vincenzo Librandi, Apr 10 2025 *)
-
a(n) = sum(k=0, n, binomial(k+3, 3)*binomial(2*k, 2*n-2*k));
-
my(N=3, M=30, x='x+O('x^M), X=1-x-x^2, Y=3); Vec(sum(k=0, (N+1)\2, 4^k*binomial(N+1, 2*k)*X^(N+1-2*k)*x^(Y*k))/(X^2-4*x^Y)^(N+1))
A382471
a(n) = Sum_{k=0..n} binomial(k+4,4) * binomial(2*k,2*n-2*k).
Original entry on oeis.org
1, 5, 20, 125, 610, 2611, 10815, 42610, 161005, 590155, 2106362, 7348265, 25141430, 84569395, 280246795, 916465742, 2961805180, 9470735650, 29994694130, 94172180660, 293326457342, 907028460410, 2786036875580, 8505001839950, 25815678641935, 77945771624609
Offset: 0
- Vincenzo Librandi, Table of n, a(n) for n = 0..400
- Index entries for linear recurrences with constant coefficients, signature (10,-35,50,-55,172,-250,100,-365,510,-29,510,-365,100,-250,172,-55,50,-35,10,-1).
-
[&+[Binomial(k+4,4) * Binomial(2*k,2*n-2*k): k in [0..n]]: n in [0..25]]; // Vincenzo Librandi, Apr 10 2025
-
Table[Sum[Binomial[k+4,4]*Binomial[2*k,2*n-2*k],{k,0,n}],{n,0,30}] (* Vincenzo Librandi, Apr 10 2025 *)
-
a(n) = sum(k=0, n, binomial(k+4, 4)*binomial(2*k, 2*n-2*k));
-
my(N=4, M=30, x='x+O('x^M), X=1-x-x^2, Y=3); Vec(sum(k=0, (N+1)\2, 4^k*binomial(N+1, 2*k)*X^(N+1-2*k)*x^(Y*k))/(X^2-4*x^Y)^(N+1))
A382473
a(n) = Sum_{k=0..n} binomial(k+6,6) * binomial(2*k,2*n-2*k).
Original entry on oeis.org
1, 7, 35, 252, 1498, 7602, 36498, 165600, 713769, 2957647, 11850223, 46111352, 174956250, 649284286, 2362771938, 8449241836, 29744151416, 103237104740, 353744829032, 1198001464940, 4013905507150, 13316690882670, 43780154987030, 142726581203640
Offset: 0
- Vincenzo Librandi, Table of n, a(n) for n = 0..500
- Index entries for linear recurrences with constant coefficients, signature (14, -77, 210, -336, 602, -1435, 2018, -1981, 4312, -5894, 3360, -7721, 9562, -3079, 9562, -7721, 3360, -5894, 4312, -1981, 2018, -1435, 602, -336, 210, -77, 14, -1).
-
[&+[Binomial(k+6, 6) * Binomial(2*k, 2*n-2*k): k in [0..n]]: n in [0..25]]; // Vincenzo Librandi, Apr 11 2025
-
Table[Sum[Binomial[k+6,6]*Binomial[2*k,2*n-2*k],{k,0,n}],{n,0,30}] (* Vincenzo Librandi, Apr 11 2025 *)
-
a(n) = sum(k=0, n, binomial(k+6, 6)*binomial(2*k, 2*n-2*k));
-
my(N=6, M=30, x='x+O('x^M), X=1-x-x^2, Y=3); Vec(sum(k=0, (N+1)\2, 4^k*binomial(N+1, 2*k)*X^(N+1-2*k)*x^(Y*k))/(X^2-4*x^Y)^(N+1))
A382474
a(n) = Sum_{k=0..n} binomial(k+7,7) * binomial(2*k,2*n-2*k).
Original entry on oeis.org
1, 8, 44, 336, 2166, 11832, 60576, 292248, 1334817, 5840296, 24637976, 100684376, 400255050, 1553016960, 5897388492, 21967711160, 80425346844, 289868771928, 1029979010972, 3612517052608, 12520285820362, 42919328903928, 145643017892472, 489606988741128
Offset: 0
- Vincenzo Librandi, Table of n, a(n) for n = 0..500
- Index entries for linear recurrences with constant coefficients, signature (16, -104, 352, -708, 1232, -2800, 5168, -6122, 9728, -18008, 16816, -19152, 37744, -27096, 24960, -50611, 24960, -27096, 37744, -19152, 16816, -18008, 9728, -6122, 5168, -2800, 1232, -708, 352, -104, 16, -1).
-
[&+[Binomial(k+7, 7) * Binomial(2*k, 2*n-2*k): k in [0..n]]: n in [0..29]]; // Vincenzo Librandi, Apr 22 2025
-
Table[Sum[Binomial[k+7,7]*Binomial[2*k,2*n-2*k],{k,0,n}],{n,0,30}] (* Vincenzo Librandi, Apr 22 2025 *)
-
a(n) = sum(k=0, n, binomial(k+7, 7)*binomial(2*k, 2*n-2*k));
-
my(N=7, M=30, x='x+O('x^M), X=1-x-x^2, Y=3); Vec(sum(k=0, (N+1)\2, 4^k*binomial(N+1, 2*k)*X^(N+1-2*k)*x^(Y*k))/(X^2-4*x^Y)^(N+1))
Showing 1-7 of 7 results.