cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-7 of 7 results.

A108479 Antidiagonal sums of number triangle A086645.

Original entry on oeis.org

1, 1, 2, 7, 17, 44, 117, 305, 798, 2091, 5473, 14328, 37513, 98209, 257114, 673135, 1762289, 4613732, 12078909, 31622993, 82790070, 216747219, 567451585, 1485607536, 3889371025, 10182505537, 26658145586, 69791931223, 182717648081
Offset: 0

Views

Author

Paul Barry, Jun 04 2005

Keywords

Crossrefs

Programs

  • Mathematica
    LinearRecurrence[{2,1,2,-1},{1,1,2,7},30] (* Harvey P. Dale, Jun 01 2021 *)

Formula

G.f.: (1 - x - x^2)/(1 - 2*x - x^2 - 2*x^3 + x^4).
a(n) = 2*(n-1) + a(n-2) + 2*a(n-3) - a(n-4).
a(n) = Sum_{k=0..floor(n/2)} C(2*(n-k), 2*k).
a(n) = Sum_{k=0..floor(n/2)} Sum_{j=0..n-k} C(2*(n-2*k), j) * C(2*k, j).
a(n) = A005252(2*n). - Seiichi Manyama, Aug 11 2024

A381421 a(n) = Sum_{k=0..n} (k+1) * binomial(2*k,2*n-2*k).

Original entry on oeis.org

1, 2, 5, 22, 68, 206, 631, 1870, 5467, 15836, 45416, 129260, 365565, 1028122, 2877697, 8021010, 22274476, 61653850, 170152275, 468347046, 1286055927, 3523777912, 9635982160, 26302324504, 71674754873, 195015074610, 529846108989, 1437657038030, 3896050721940
Offset: 0

Views

Author

Seiichi Manyama, Mar 28 2025

Keywords

Crossrefs

Programs

  • Magma
    [&+[(k+1) * Binomial(2*k, 2*n-2*k): k in [0..n]]: n in [0..29]]; // Vincenzo Librandi, Apr 23 2025
  • Mathematica
    Table[Sum[(k+1)*Binomial[2*k,2*n-2*k],{k,0,n}],{n,0,30}] (* Vincenzo Librandi, Apr 23 2025 *)
  • PARI
    a(n) = sum(k=0, n, (k+1)*binomial(2*k, 2*n-2*k));
    
  • PARI
    my(N=1, M=30, x='x+O('x^M), X=1-x-x^2, Y=3); Vec(sum(k=0, (N+1)\2, 4^k*binomial(N+1, 2*k)*X^(N+1-2*k)*x^(Y*k))/(X^2-4*x^Y)^(N+1))
    

Formula

G.f.: ((1-x-x^2)^2 + 4*x^3) / ((1-x-x^2)^2 - 4*x^3)^2.
a(n) = 4*a(n-1) - 2*a(n-2) - 11*a(n-4) - 2*a(n-6) + 4*a(n-7) - a(n-8).

A382230 a(n) = Sum_{k=0..n} binomial(k+2,2) * binomial(2*k,2*n-2*k).

Original entry on oeis.org

1, 3, 9, 46, 171, 591, 2033, 6714, 21606, 68308, 212370, 651234, 1974113, 5924277, 17623671, 52025858, 152539077, 444530073, 1288396257, 3715833732, 10668907932, 30507914696, 86912853588, 246755125332, 698353551105, 1970673504951, 5545952371509, 15568330002486
Offset: 0

Views

Author

Seiichi Manyama, Mar 28 2025

Keywords

Crossrefs

Programs

  • Magma
    [&+[Binomial(k+2, 2) * Binomial(2*k, 2*n-2*k): k in [0..n]]: n in [0..29]]; // Vincenzo Librandi, Apr 22 2025
  • Mathematica
    Table[Sum[Binomial[k+2,2]*Binomial[2*k,2*n-2*k],{k,0,n}],{n,0,30}] (* Vincenzo Librandi, Apr 22 2025 *)
  • PARI
    a(n) = sum(k=0, n, binomial(k+2, 2)*binomial(2*k, 2*n-2*k));
    
  • PARI
    my(N=2, M=30, x='x+O('x^M), X=1-x-x^2, Y=3); Vec(sum(k=0, (N+1)\2, 4^k*binomial(N+1, 2*k)*X^(N+1-2*k)*x^(Y*k))/(X^2-4*x^Y)^(N+1))
    

Formula

G.f.: (Sum_{k=0..1} 4^k * binomial(3,2*k) * (1-x-x^2)^(3-2*k) * x^(3*k)) / ((1-x-x^2)^2 - 4*x^3)^3.
a(n) = 6*a(n-1) - 9*a(n-2) + 2*a(n-3) - 18*a(n-4) + 30*a(n-5) + 7*a(n-6) + 30*a(n-7) - 18*a(n-8) + 2*a(n-9) - 9*a(n-10) + 6*a(n-11) - a(n-12).

A382470 a(n) = Sum_{k=0..n} binomial(k+3,3) * binomial(2*k,2*n-2*k).

Original entry on oeis.org

1, 4, 14, 80, 345, 1336, 5074, 18404, 64460, 220276, 736242, 2415128, 7798043, 24833160, 78131242, 243211412, 749926963, 2292771088, 6956262660, 20959406680, 62753991192, 186809711448, 553172044548, 1630068765840, 4781871397429, 13969460520764
Offset: 0

Views

Author

Seiichi Manyama, Mar 28 2025

Keywords

Crossrefs

Programs

  • Magma
    [&+[Binomial(k+3,3) * Binomial(2*k,2*n-2*k): k in [0..n]]: n in [0..25]]; // Vincenzo Librandi, Apr 10 2025
  • Mathematica
    Table[Sum[Binomial[k+3,3]*Binomial[2*k,2*n-2*k],{k,0,n}],{n,0,30}] (* Vincenzo Librandi, Apr 10 2025 *)
  • PARI
    a(n) = sum(k=0, n, binomial(k+3, 3)*binomial(2*k, 2*n-2*k));
    
  • PARI
    my(N=3, M=30, x='x+O('x^M), X=1-x-x^2, Y=3); Vec(sum(k=0, (N+1)\2, 4^k*binomial(N+1, 2*k)*X^(N+1-2*k)*x^(Y*k))/(X^2-4*x^Y)^(N+1))
    

Formula

G.f.: (Sum_{k=0..2} 4^k * binomial(4,2*k) * (1-x-x^2)^(4-2*k) * x^(3*k)) / ((1-x-x^2)^2 - 4*x^3)^4.
a(n) = 8*a(n-1) - 20*a(n-2) + 16*a(n-3) - 26*a(n-4) + 88*a(n-5) - 48*a(n-6) + 24*a(n-7) - 163*a(n-8) + 24*a(n-9) - 48*a(n-10) + 88*a(n-11) - 26*a(n-12) + 16*a(n-13) - 20*a(n-14) + 8*a(n-15) - a(n-16).

A382471 a(n) = Sum_{k=0..n} binomial(k+4,4) * binomial(2*k,2*n-2*k).

Original entry on oeis.org

1, 5, 20, 125, 610, 2611, 10815, 42610, 161005, 590155, 2106362, 7348265, 25141430, 84569395, 280246795, 916465742, 2961805180, 9470735650, 29994694130, 94172180660, 293326457342, 907028460410, 2786036875580, 8505001839950, 25815678641935, 77945771624609
Offset: 0

Views

Author

Seiichi Manyama, Mar 28 2025

Keywords

Crossrefs

Programs

  • Magma
    [&+[Binomial(k+4,4) * Binomial(2*k,2*n-2*k): k in [0..n]]: n in [0..25]]; // Vincenzo Librandi, Apr 10 2025
  • Mathematica
    Table[Sum[Binomial[k+4,4]*Binomial[2*k,2*n-2*k],{k,0,n}],{n,0,30}] (* Vincenzo Librandi, Apr 10 2025 *)
  • PARI
    a(n) = sum(k=0, n, binomial(k+4, 4)*binomial(2*k, 2*n-2*k));
    
  • PARI
    my(N=4, M=30, x='x+O('x^M), X=1-x-x^2, Y=3); Vec(sum(k=0, (N+1)\2, 4^k*binomial(N+1, 2*k)*X^(N+1-2*k)*x^(Y*k))/(X^2-4*x^Y)^(N+1))
    

Formula

G.f.: (Sum_{k=0..2} 4^k * binomial(5,2*k) * (1-x-x^2)^(5-2*k) * x^(3*k)) / ((1-x-x^2)^2 - 4*x^3)^5.

A382472 a(n) = Sum_{k=0..n} binomial(k+5,5) * binomial(2*k,2*n-2*k).

Original entry on oeis.org

1, 6, 27, 182, 987, 4620, 20678, 87732, 355095, 1387462, 5258967, 19416222, 70086803, 248046540, 862694058, 2954279732, 9977518122, 33278815920, 109749059308, 358231786128, 1158357919194, 3713416860580, 11810098024410, 37285901203740, 116917784689237
Offset: 0

Views

Author

Seiichi Manyama, Mar 28 2025

Keywords

Crossrefs

Programs

  • Magma
    [&+[Binomial(k+5, 5) * Binomial(2*k, 2*n-2*k): k in [0..n]]: n in [0..25]]; // Vincenzo Librandi, Apr 11 2025
  • Mathematica
    Table[Sum[Binomial[k+5,5]*Binomial[2*k,2*n-2*k],{k,0,n}],{n,0,30}] (* Vincenzo Librandi, Apr 11 2025 *)
  • PARI
    a(n) = sum(k=0, n, binomial(k+5, 5)*binomial(2*k, 2*n-2*k));
    
  • PARI
    my(N=5, M=30, x='x+O('x^M), X=1-x-x^2, Y=3); Vec(sum(k=0, (N+1)\2, 4^k*binomial(N+1, 2*k)*X^(N+1-2*k)*x^(Y*k))/(X^2-4*x^Y)^(N+1))
    

Formula

G.f.: (Sum_{k=0..3} 4^k * binomial(6,2*k) * (1-x-x^2)^(6-2*k) * x^(3*k)) / ((1-x-x^2)^2 - 4*x^3)^6.

A382473 a(n) = Sum_{k=0..n} binomial(k+6,6) * binomial(2*k,2*n-2*k).

Original entry on oeis.org

1, 7, 35, 252, 1498, 7602, 36498, 165600, 713769, 2957647, 11850223, 46111352, 174956250, 649284286, 2362771938, 8449241836, 29744151416, 103237104740, 353744829032, 1198001464940, 4013905507150, 13316690882670, 43780154987030, 142726581203640
Offset: 0

Views

Author

Seiichi Manyama, Mar 28 2025

Keywords

Crossrefs

Programs

  • Magma
    [&+[Binomial(k+6, 6) * Binomial(2*k, 2*n-2*k): k in [0..n]]: n in [0..25]]; // Vincenzo Librandi, Apr 11 2025
  • Mathematica
    Table[Sum[Binomial[k+6,6]*Binomial[2*k,2*n-2*k],{k,0,n}],{n,0,30}] (* Vincenzo Librandi, Apr 11 2025 *)
  • PARI
    a(n) = sum(k=0, n, binomial(k+6, 6)*binomial(2*k, 2*n-2*k));
    
  • PARI
    my(N=6, M=30, x='x+O('x^M), X=1-x-x^2, Y=3); Vec(sum(k=0, (N+1)\2, 4^k*binomial(N+1, 2*k)*X^(N+1-2*k)*x^(Y*k))/(X^2-4*x^Y)^(N+1))
    

Formula

G.f.: (Sum_{k=0..3} 4^k * binomial(7,2*k) * (1-x-x^2)^(7-2*k) * x^(3*k)) / ((1-x-x^2)^2 - 4*x^3)^7.
Showing 1-7 of 7 results.