cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A382474 a(n) = Sum_{k=0..n} binomial(k+7,7) * binomial(2*k,2*n-2*k).

Original entry on oeis.org

1, 8, 44, 336, 2166, 11832, 60576, 292248, 1334817, 5840296, 24637976, 100684376, 400255050, 1553016960, 5897388492, 21967711160, 80425346844, 289868771928, 1029979010972, 3612517052608, 12520285820362, 42919328903928, 145643017892472, 489606988741128
Offset: 0

Views

Author

Seiichi Manyama, Mar 28 2025

Keywords

Crossrefs

Programs

  • Magma
    [&+[Binomial(k+7, 7) * Binomial(2*k, 2*n-2*k): k in [0..n]]: n in [0..29]]; // Vincenzo Librandi, Apr 22 2025
  • Mathematica
    Table[Sum[Binomial[k+7,7]*Binomial[2*k,2*n-2*k],{k,0,n}],{n,0,30}] (* Vincenzo Librandi, Apr 22 2025 *)
  • PARI
    a(n) = sum(k=0, n, binomial(k+7, 7)*binomial(2*k, 2*n-2*k));
    
  • PARI
    my(N=7, M=30, x='x+O('x^M), X=1-x-x^2, Y=3); Vec(sum(k=0, (N+1)\2, 4^k*binomial(N+1, 2*k)*X^(N+1-2*k)*x^(Y*k))/(X^2-4*x^Y)^(N+1))
    

Formula

G.f.: (Sum_{k=0..4} 4^k * binomial(8,2*k) * (1-x-x^2)^(8-2*k) * x^(3*k)) / ((1-x-x^2)^2 - 4*x^3)^8.