A382521 Square array A(n,k), n>=0, k>=0, read by antidiagonals downwards, where n unlabeled objects are distributed into k containers of three kinds. Containers may be left empty.
1, 3, 0, 6, 3, 0, 10, 9, 3, 0, 15, 18, 15, 3, 0, 21, 30, 36, 18, 3, 0, 28, 45, 66, 55, 24, 3, 0, 36, 63, 105, 114, 81, 27, 3, 0, 45, 84, 153, 195, 189, 108, 33, 3, 0, 55, 108, 210, 298, 348, 276, 145, 36, 3, 0, 66, 135, 276, 423, 558, 552, 405, 180, 42, 3, 0, 78, 165, 351, 570, 819, 936, 858, 549, 225, 45, 3, 0
Offset: 0
Examples
Array starts: 0 : [1, 3, 6, 10, 15, 21, 28, 36, 45, 55, 66] 1 : [0, 3, 9, 18, 30, 45, 63, 84, 108, 135, 165] 2 : [0, 3, 15, 36, 66, 105, 153, 210, 276, 351, 435] 3 : [0, 3, 18, 55, 114, 195, 298, 423, 570, 739, 930] 4 : [0, 3, 24, 81, 189, 348, 558, 819, 1131, 1494, 1908] 5 : [0, 3, 27, 108, 276, 552, 936, 1428, 2028, 2736, 3552] 6 : [0, 3, 33, 145, 405, 858, 1532, 2427, 3543, 4880, 6438] 7 : [0, 3, 36, 180, 549, 1248, 2340, 3861, 5811, 8190, 10998] 8 : [0, 3, 42, 225, 741, 1785, 3510, 6000, 9300, 13410, 18330] 9 : [0, 3, 45, 271, 957, 2451, 5051, 8967, 14307, 21126, 29424] 10 : [0, 3, 51, 324, 1227, 3312, 7137, 13125, 21552, 32553, 46194] ...
Crossrefs
Programs
-
Maple
b:= proc(n, i) option remember; expand(`if`(n=0, 1, `if`(i<1, 0, add(x^j*b(n-i*j, min(n-i*j, i-1))*(j+2)*(j+1)/2, j=0..n/i)))) end: A:= (n, k)-> coeff(b(n+k$2), x, k): seq(seq(A(n, d-n), n=0..d), d=0..11); # Alois P. Heinz, Mar 31 2025
-
Python
from sympy import binomial from sympy.utilities.iterables import partitions def a_row(n, length=11) : if n == 0 : return [ binomial( k + 2, 2) for k in range( length) ] t = list( [0] * length) for p in partitions( n): fact = 1 s = 0 for k in p : s += p[k] fact *= binomial( 2 + p[k], 2) if s > 0 : t[s] += fact a = list( [0] * length) for i in range( 1, length): for j in range( i, 0, -1): a[i] += t[j] * binomial( i - j + 2, 2) return a for n in range(11): print(a_row(n))