cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A382522 Square array A(n,k), n>=0, k>=0, read by antidiagonals downwards, where n unlabeled objects are distributed into k containers of four kinds. Containers may be left empty.

Original entry on oeis.org

1, 4, 0, 10, 4, 0, 20, 16, 4, 0, 35, 40, 26, 4, 0, 56, 80, 80, 32, 4, 0, 84, 140, 180, 124, 42, 4, 0, 120, 224, 340, 320, 184, 48, 4, 0, 165, 336, 574, 660, 535, 248, 58, 4, 0, 220, 480, 896, 1184, 1200, 800, 332, 64, 4, 0, 286, 660, 1320, 1932, 2284, 1956, 1176, 416, 74, 4, 0
Offset: 0

Views

Author

Peter Dolland, Mar 31 2025

Keywords

Examples

			Array starts:
 0 : [1, 4, 10,  20,   35,    56,    84,   120,    165,    220,    286]
 1 : [0, 4, 16,  40,   80,   140,   224,   336,    480,    660,    880]
 2 : [0, 4, 26,  80,  180,   340,   574,   896,   1320,   1860,   2530]
 3 : [0, 4, 32, 124,  320,   660,  1184,  1932,   2944,   4260,   5920]
 4 : [0, 4, 42, 184,  535,  1200,  2284,  3892,   6129,   9100,  12910]
 5 : [0, 4, 48, 248,  800,  1956,  3968,  7088,  11568,  17660,  25616]
 6 : [0, 4, 58, 332, 1176,  3080,  6618, 12364,  20892,  32776,  48590]
 7 : [0, 4, 64, 416, 1616,  4560, 10368, 20280,  35536,  57376,  87040]
 8 : [0, 4, 74, 520, 2187,  6580, 15778, 32196,  58414,  97012, 150570]
 9 : [0, 4, 80, 628, 2848,  9140, 23088, 49172,  92352, 157808, 250720]
10 : [0, 4, 90, 752, 3660, 12440, 33002, 73188, 142160, 249740, 406036]
...
		

Crossrefs

Antidiagonal sums give A023003.
Without empty containers: A382041.
Cf. A382344, A000292, 2 kinds: A382345, 3 kinds: A382521.

Programs

  • Maple
    b:= proc(n, i) option remember; expand(`if`(n=0, 1, `if`(i<1, 0,
          add(x^j*b(n-i*j, min(n-i*j, i-1))*binomial(j+3, 3), j=0..n/i))))
        end:
    A:= (n, k)-> coeff(b(n+k$2), x, k):
    seq(seq(A(n, d-n), n=0..d), d=0..10);  # Alois P. Heinz, Mar 31 2025
  • Mathematica
    b[n_, i_] := b[n, i] = Expand[If[n == 0, 1, If[i < 1, 0, Sum[x^j*b[n-i*j, Min[n-i*j, i-1]]*Binomial[j+3, 3], {j, 0, n/i}]]]];
    A[n_, k_] := Coefficient[b[n+k, n+k], x, k];
    Table[Table[A[n, d-n], {n, 0, d}], {d, 0, 10}] // Flatten (* Jean-François Alcover, Aug 07 2025, after Alois P. Heinz *)
  • Python
    from sympy import binomial
    from sympy.utilities.iterables import partitions
    def a_row(n, length=11) :
        if n == 0 : return [ binomial( k + 3, 3) for k in range( length) ]
        t = list( [0] * length)
        for p in partitions( n):
            fact = 1
            s = 0
            for k in p :
                s += p[k]
                fact *= binomial( 3 + p[k], 3)
            if s > 0 :
                t[s] += fact
        a = list( [0] * length)
        for i in range( 1, length):
            for j in range( i, 0, -1):
                a[i] += t[j] * binomial( i - j + 3, 3)
        return a
    for n in range(11): print(a_row(n))

Formula

A(0,k) = binomial(k + 3, 3) = A000292(k + 1).
A(1,k) = 4 * binomial(k + 2, 3).
A(n,1) = 4.
A(n,k) = Sum_{i=0..k} binomial(k + 3 - i, 3) * A382344(n,i) for k <= n.
A(n,k) = A382344(n+k,k).