cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A382539 Expansion of 1/(1 - x/(1 - 4*x)^(1/2))^2.

Original entry on oeis.org

1, 2, 7, 28, 117, 498, 2139, 9232, 39953, 173162, 751103, 3259132, 14142973, 61367542, 266223083, 1154592752, 5005724185, 21694354406, 93985418399, 407009142836, 1761880487509, 7623911365210, 32976925264827, 142585750821408, 616281411472257, 2662702949358158
Offset: 0

Views

Author

Seiichi Manyama, Mar 31 2025

Keywords

Crossrefs

Programs

  • Magma
    R:=PowerSeriesRing(Rationals(), 25); Coefficients(R!( 1/(1 - x/(1 - 4*x)^(1/2))^2)); // Vincenzo Librandi, May 13 2025
  • Mathematica
    Table[Sum[4^(n-k)* (k+1)* Binomial[n-k/2-1, n-k],{k,0,n}],{n,0,25}] (* Vincenzo Librandi, May 13 2025 *)
  • PARI
    a(n) = sum(k=0, n, 4^(n-k)*(k+1)*binomial(n-k/2-1, n-k));
    

Formula

a(n) = Sum_{k=0..n} 4^(n-k) * (k+1) * binomial(n-k/2-1,n-k).
D-finite with recurrence (-n+1)*a(n) +2*(4*n-7)*a(n-1) +(-15*n+41)*a(n-2) +2*(-2*n+3)*a(n-3)=0. - R. J. Mathar, Apr 02 2025