A382547 a(n) is the smallest positive integer s that can be partitioned into n distinct positive integers whose product is s * 100^(n-1), or 0 if no such s exists.
1, 405, 525, 644, 762, 882, 1038, 1155, 1302, 1428, 1638, 1863, 2079, 2187, 2457, 2673, 3078, 3213, 3402, 3861, 4374, 5103, 5103, 6174
Offset: 1
Examples
a(2) = 405 because 180 + 225 = 405 and 180 * 225 = 405 * 100^1 and no positive integer smaller than 405 exists with the requested properties.
Links
- Mathematics StackExchange user Servaes, What is the maximum number of distinct prices whose product equals their sum?, answer dated May 29 2025.
Programs
-
PARI
dfs(rs, rp, i, r, tp) = if(r==1, return(rs==rp&&setsearch(d, rs)>i)); if((rs/r)^r<=rp, return(0)); for(j=i+1, oo, if(tp>rp, return(0)); if(rp%d[j]==0, if(dfs(rs-d[j], rp/d[j], j, r-1, tp/d[j]), return(1))); tp*=d[j+r]/d[j]); a(n) = if(n>1, my(p); for(s=100*n, oo, d=divisors(p=s*100^(n-1)); if(dfs(s, p, 0, n, prod(i=1, n, d[i])), return(s))), 1); \\ Jinyuan Wang, May 14 2025
Extensions
a(17)-a(21) from Markus Sigg, Apr 21 2025
a(22)-a(24) from Jinyuan Wang, May 14 2025
Comments