A382837 Numbers k such that k - A071324(k) > A000010(k).
60, 70, 84, 120, 140, 154, 168, 180, 200, 210, 220, 240, 252, 260, 264, 280, 286, 300, 312, 336, 340, 350, 360, 374, 390, 396, 408, 418, 420, 442, 456, 468, 480, 490, 494, 504, 510, 520, 528, 540, 560, 570, 588, 598, 600, 624, 630, 646, 660, 672, 680, 700
Offset: 1
Keywords
Examples
60 - A071324(60) = 60 - 40 = 20 > A000010(60) = 16.
Links
- Shreyansh Jaiswal, Table of n, a(n) for n = 1..10000
- Krassimir Atanassov, A remark on an arithmetic function. Part 2, Notes on Number Theory and Discrete Mathematics 15(3) (2009), 21-22.
- Shreyansh Jaiswal, Logarithmic plot of the ratio f(n)/n, upto n = 10^6
- Shreyansh Jaiswal, Plot of the ratio f(n)/n, from 10^5 <= n <= 10^6 [An enlarged version of the previous graph.]
- Shreyansh Jaiswal, On two Conjectures by Atanassov on the Alternating sum-of-divisors function, Jun 14 2025.
Programs
-
Mathematica
f[n_]:=Plus@@(-(d=Divisors[n])*(-1)^(Range[Length[d],1,-1])); fQ[n_]:=n-f[n]>EulerPhi[n]; Select[Range[700], fQ[#]&] (* Ivan N. Ianakiev, Apr 13 2025, thanks to Amiram Eldar at A071324 *)
-
PARI
isok(k) = my(d=Vecrev(divisors(k))); k - sum(i=1, #d, (-1)^(i+1)*d[i]) > eulerphi(k); \\ Michel Marcus, Apr 12 2025
-
Python
from sympy import divisors; from functools import lru_cache from sympy import totient cached_divisors = lru_cache()(divisors) def c(n): return sum(d if i%2==0 else -d for i, d in enumerate(reversed(cached_divisors(n)))) for n in range(1, 701): if n - c(n) > totient(n): print(n, end=", ")
Comments